
IMPLICATIONS AND LIMITATIONS OF
SECURING AN INFINIBAND NETWORK

THESIS

Lucas E. Mireles, Second Lieutenant, USAF

AFIT-ENG-MS-20-M-44

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-20-M-44

IMPLICATIONS AND LIMITATIONS OF

SECURING AN INFINIBAND NETWORK

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

Lucas E. Mireles, B.S.

Second Lieutenant, USAF

March 2020

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-20-M-44

IMPLICATIONS AND LIMITATIONS OF

SECURING AN INFINIBAND NETWORK

THESIS

Lucas E. Mireles, B.S.
Second Lieutenant, USAF

Committee Membership:

Scott R. Graham, Ph.D.
Chair

Patrick J. Sweeney, Ph.D., Lt. Col
Member

Stephen Dunlap, M.S.
Member

Matthew J. Dallmeyer, M.S.
Member

AFIT-ENG-MS-20-M-44

Abstract

The InfiniBand Architecture is one of the leading network interconnects used in high

performance computing, delivering very high bandwidth and low latency. As the

popularity of InfiniBand increases, the possibility for new InfiniBand applications

arise outside the domain of high performance computing, thereby creating the op-

portunity for new security risks. In this work, new security questions are considered

and addressed. The study demonstrates that many common traffic analyzing tools

cannot monitor or capture InfiniBand traffic transmitted between two hosts. Due to

the kernel bypass nature of InfiniBand, many host-based network security systems

cannot be executed on InfiniBand applications. Those that can impose a significant

performance loss for the network. The research concludes that not all network secu-

rity practices used for Ethernet translate to InfiniBand as previously suggested and

that an answer to meeting specific security requirements for an InfiniBand network

might reside in hardware offload.

iv

AFIT-ENG-MS-20-M-44

This work is dedicated to my wife and family for their unfailing love and support.

v

Acknowledgements

Foremost, I would like to express my sincere gratitude to my advisor Dr. Scott

Graham for guiding me throughout my graduate education with his expertise and

immense knowledge. His enthusiasm and personal generosity made this research

process invaluable and I could not have completed it without him.

I would also like to thank my professors and committee members Stephen Dun-

lap, Matthew Dallmeyer, and Lt Col Patrick Sweeney for mentoring me throughout

this process and providing crucial feedback that not only improved my research, but

improved me as a learner.

Finally, I must thank my wife for her continuous support, encouragement, and

patience at all times. Throughout this entire process, you never once doubted me

or let me doubt myself. This accomplishment would not have been possible without

you.

Lucas E. Mireles

vi

Table of Contents

Page

Abstract . iv

Dedication . v

Acknowledgements . vi

List of Figures . ix

List of Tables . x

List of Acronyms . xi

I. Introduction . 1

1.1 Background and Motivation . 1
1.2 Problem Statement . 2
1.3 Research Objectives . 3
1.4 Organization . 4

II. Background and Related Work . 6

2.1 Overview . 6
2.2 NIST Cybersecurity Framework . 6
2.3 The InfiniBand Architecture . 8

2.3.1 Infiniband Components . 9
2.3.2 Software Architecture . 12
2.3.3 InfiniBand Architecture (IBA) Stack Layers 15
2.3.4 Communication Model . 19
2.3.5 Current Security Features . 19

2.4 Example Application: Vehicle Networks and ADAS 21
2.5 Relevant Technologies . 23

2.5.1 Field Programmable Gate Array . 24
2.5.2 Peripheral Component Interconnect Express 25
2.5.3 Linux Device Drivers . 26

2.6 Related Work in IBA Security . 28
2.6.1 Insights into IBA vulnerabilities . 28
2.6.2 IBA GUID Spoofing . 29
2.6.3 Security Analysis of InfiniBand Protocol

Implementation . 29
2.6.4 A Framework for Cyber Vulnerability

Assessments of Infiniband Networks . 30
2.6.5 An FPGA implementation for a high-speed

optical link with a PCIe interface . 31

vii

Page

2.7 Summary . 31

III. Infiniband Case Studies . 33

3.1 Objective . 33
3.1.1 Testbed Setup . 33
3.1.2 Case Study 1: Traffic Monitoring . 36
3.1.3 Case Study 2: Implementation of a Network

Security System on InfiniBand Verbs. 38
3.1.4 Case Study 3: Performance of Software-Based

Security . 40
3.2 Results . 41

3.2.1 Case Study 1: Results . 41
3.2.2 Case Study 2: Results . 43
3.2.3 Case Study 3: Results . 44

3.3 Conclusion . 45

IV. Hardware Security Solutions . 47

4.1 Objective . 47
4.2 Possible Technology . 47
4.3 Requirements . 48
4.4 Exploration Approach . 50
4.5 Hardware Accelerated Security Protocol . 51

4.5.1 Procedure . 54
4.5.2 Findings and Implications . 57

4.6 Programmable SmartNIC via FPGA . 58
4.6.1 Procedure . 60
4.6.2 Findings and Implications . 66

4.7 Programmable SmartNIC via System on Chip . 67
4.7.1 Future Implications . 68

4.8 Summary . 69

V. Conclusion . 71

5.1 Overview . 71
5.2 Summary . 71
5.3 Research Contributions . 75
5.4 Future Work . 75
5.5 Conclusion . 76

Bibliography . 78

viii

List of Figures

Figure Page

1. IBA Storage Area Network with Fabric Highlighted [1] 9

2. State Machine for Initialization of Subnet Manager [1] 11

3. IBA Software Stack [2] . 12

4. InfiniBand Architecture Stack Layers . 15

5. IBA Data Packet Format [1] . 16

6. Network Diagram of Ethernet 10GbE with Connect-X 5
Adapter. 34

7. Wireshark Analysis of Captured InfiniBand Packets. 42

8. Wireshark Analysis of InfiniBand Packets with IPsec. 44

9. Security Device Exploration Method . 50

10. Mellanox Innova IPsec Adapter . 53

11. Mellanox Innova 2 Flex . 59

12. FPGA Block Diagram for Xillybus . 64

13. Mellanox BlueField SmartNic . 68

ix

List of Tables

Table Page

1. Top 5 Supercomputer Interconnects. 2

2. Overview of Programs used in Case Studies. 36

3. Case Study 3 results. 44

4. Hardware Device Capabilities Summary . 70

x

List of Acronyms

ADAS Advanced Driver Assistance Systems

ASIC Application Specific Integrated Circuit

CA Channel Adapter

CAN Controller Area Network

DMA Direct Memory Access

ECU electronic control unit

FPGA Field Programmable Gate Array

GID Global ID

GRH Global Route Header

GUID Globally Unique ID

HCA Host Channel Adapter

HDL Hardware Description Language

HPC High Performance Computing

IBA InfiniBand Architecture

IBTA InfiniBand Trade Association

ICRC Invariant CRC

IP Internet Protocol

IPoIB IP over InfiniBand

L Key Local Memory Key

LID local identifier

LRH Local Route Header

LUT Look up Table

MAC Media Access Control

MST Mellanox Software Tools

xi

NIST National Institute of Standards and Technology

OS Operating System

P Key Partition Key

PCIe Peripheral Component Interconnect Express

Q Key Queue Pair Key

QP Queue Pair

R Key Remote Memory Key

RDMA Remote Direct Memory Access

RoCE RDMA over Converged Ethernet

SDK Software Development Kit

SDN Software Defined Networking

SM Subnet Manager

SOC System on Chip

TCA Target Channel Adapter

TLP Transaction Layer Packet

VCRC Variant CRC

xii

IMPLICATIONS AND LIMITATIONS OF

SECURING AN INFINIBAND NETWORK

I. Introduction

1.1 Background and Motivation

The evolution of technology continues to demand an increase in computer pro-

cessing power, which semiconductor manufacturers have continued to meet. However,

industry-standard Input/Output (I/O) busses have not produced the levels of avail-

ability, reliability, performance, and scalability necessary to achieve the potential of

this continual increase [3]. To overcome this hurdle, the InfiniBand Trade Association

(IBTA) was founded, comprised of over 180 companies, to develop a new interconnect

technology, the InfiniBand Architecture (IBA).

The IBA is a powerful interconnect architecture that is quickly becoming the stan-

dard for I/O connectivity in servers and High Performance Computing (HPC). In fact,

28% of the Top 500 Supercomputers use InfiniBand as their interconnect, accounting

for over 35% of the total performance, and second only to Gigabit Ethernet as seen in

Table 1 [4]. This is largely due to its ability to provide higher bandwidth and lower

memory latency than its Ethernet competitor through a copy-avoidance architecture,

to reduce CPU utilization. InfiniBand relies on point-to-point connections to accom-

plish data transfers and treats all I/O as a form of communication [3]. Its advanced

capabilities provide extremely high bandwidth and very low latency communications

between hosts and devices with little overhead, making it ideal to carry multiple traf-

fic types including clustering, communications, storage, and management [5]. As the

1

popularity of InfiniBand increases, it is expected that InfiniBand will be deployed in

many applications beyond HPC clusters as the demand for high bandwidth and low

latency continues to grow in all areas of computer communication [6].

Interconnect: Count Share (%)
Gigabit Ethernet 259 51.8
InfiniBand 140 28
Omnipath 50 10
Custom Interconnect 45 9
Proprietary Network 5 1

Table 1. Top 5 Supercomputer Interconnects.

1.2 Problem Statement

Anticipating future deployment of InfiniBand networks outside the domain of HPC

clusters, it is essential to explore and evaluate the security landscape of IBA. Though

some research has been conducted on the security of InfiniBand [7, 8, 9, 10, 11], the

experiments focused heavily on the protocol itself and did not consider other appli-

cations. The security features for the IBA were designed for its deployment in large

data centers, and therefore did not consider possible risks outside this environment.

As IBA deployments increase, it is inevitable that the IBA will soon be a target for

malicious cyber attacks, and users should be aware of potential vulnerabilities and

implications. This paper addresses some additional security questions not answered

by previous work with the hope of finding a solution that will help mitigate poten-

tial cyber threats. This study will evaluate whether or not InfiniBand traffic can be

monitored by common traffic analyzers used on Ethernet. It will also determine the

effectiveness of network security systems on InfiniBand programs and their impact

on network performance. An analysis of this work will help guide future research in

securing an InfiniBand network.

2

1.3 Research Objectives

This research evaluates the implications of securing an InfiniBand network and

explores potential solutions to accomplish this goal. Three case studies are performed

to determine if traditional security practices for Ethernet networks could be imple-

mented on InfiniBand. Additionally, three Mellanox adapters are explored to establish

their security limitations. The research objectives for this work are outlined below:

• Present key concepts behind the IBA specification such as its communication

model, software architecture, and it current security features.

• Share the motivation behind the creation of the IBA and how future applications

can employ its advanced capabilities outside of the HPC environment.

• Understand the National Institute of Standards and Technology (NIST) Frame-

work, its intention, and how it can be used to evaluate the security of an Infini-

Band network.

• Set up and deploy an operational InfiniBand network.

• Develop a custom InfiniBand program that can be integrated with the deployed

network.

• Integrate Ethernet network security systems on an InfiniBand network.

• Evaluate the network performance impact that network security systems have

on InfiniBand networks.

• Understand the role of device drivers and how they interact with hardware

devices to provide desired capabilities.

• Define what it means to secure an InfiniBand network, and determine what

security capabilities are required.

3

• Identify the future hardware device that will be used to secure an InfiniBand

network.

The questions that are to be answered by this research that accomplish the pre-

ceding objections are listed below:

• Is it feasible to secure an InfiniBand network with network security systems

used on Ethernet networks?

• What are the network performance impacts associated with an implementation

of a network security system on an InfiniBand network?

• Are there advantages to using a hardware offloaded security system as opposed

to using traditional security system implemented within the kernel?

• Is there a hardware device compatible with the IBA that is capable of Protect-

ing, Detecting, and Responding to potential cyber threats at line speed?

1.4 Organization

The organization of this thesis is outlined as follows. Chapter II introduces the

IBA, the main concepts surrounding its implementation, and the components that

allow its advanced network capabilities. It discusses the NIST Framework and the

five core functions that will later be used to define securing an InfiniBand network.

Additionally, it presents relevant technology, a possible example application of an

InfiniBand network, and related research.

Chapter III is a collection of three case studies used to explore the difficulties

and implications of securing an InfiniBand network. It describes the test bed setup,

network configuration, and network security systems utilized to conduct the listed

procedures of all three case studies. It finishes by presenting, analyzing, and discussing

4

the results of each case study and concludes that a hardware offloaded security system

may be the answer to secure an InfiniBand network.

Chapter IV explores three possible hardware devices that could be used to se-

cure an InfiniBand network. It defines the desired security capabilities the solution

must possess, assesses suitable technologies for device implementation, and presents

the exploration approach used to examine all possible solutions. It compares all

three devices’ theoretical implementations of a hardware offloaded security system

and concludes the Mellanox BlueField SmartNIC is the appropriate device for its

implementation.

Finally, Chapter V summarizes the work that was accomplished and lists the ma-

jor contributions to the area of InfiniBand security. It presents future work areas

for this research that will improve upon the security and manageability of an Infini-

Band network including Software Defined Networking (SDN) and machine learning

approaches. In concludes by challenging the HPC and cyber communities to make

securing InfiniBand a top priority.

5

II. Background and Related Work

2.1 Overview

This chapter presents background information and knowledge about the IBA and

discusses relevant technologies associated with this research effort. It begins by re-

viewing the NIST Cybersecurity Framework which will be used to help define the

goal of securing an InfiniBand network. Next, it describes the IBA, the services that

it provides, and the components that allow its operation. An overview of the software

and hardware stack layers are presented and the relationship between them and the

InfiniBand communication model is introduced. It describes three key technologies

used in this experiment to help explore the security limitations of current InfiniBand

networks. It concludes by summarizing current literature in the field of InfiniBand

network security highlighting potential areas of interest that need to be further ex-

plored.

2.2 NIST Cybersecurity Framework

NIST was given the task of identifying and developing cybersecurity risk frame-

works for critical infrastructure owners and operators by the Cybersecurity Enhance-

ment Act of 2014 [12]. The act stated that NIST’s framework must identify “a

prioritized, flexible, repeatable, performance-based, and cost-effective approach, in-

cluding information security measures and controls that may be voluntarily adopted

by owners and operators of critical infrastructure to help them identify, assess, and

manage cyber risks” [12]. The NIST framework offers a flexible way to address and

mitigate the risks of cybersecurity by prioritizing and identifying required actions.

The key reasons for selecting the NIST framework reside in its scalability. It can be

used to help manage cyber risks for large, complex organizations or it can be used to

6

manage cyber risks for specific critical services such as an interconnect architecture:

IBA.

The NIST Framework consists of three main parts: Framework Implementation

Tiers, Framework Profiles, and the Framework Core. Framework Implementation

Tiers describe the degree of cybersecurity risk management that a particular organi-

zation is willing to practice. The implementation tiers set the tone for cybersecurity

risk management within the organization. A Framework Profile characterizes the

current or future desired state of an organization based on the alignment of its cy-

bersecurity risk management practices and guidelines to the Framework Core. These

profiles are conducted as self-assessments of an organization’s cybersecurity risk man-

agement [12]. The Framework Core presents standards, guidelines, and practices that

ease comprehension of cybersecurity activities and outcomes from the leadership level

to the operations level [12]. The Framework Core will be the primary focus of this

research because it deals directly with the implementation of cybersecurity risk man-

agement via its five Core Functions: Identify, Protect, Detect, Respond, Recover.

These Core Functions act as the backbone of the Framework Core as they provide a

high-level, strategic view of basic cybersecurity activities by organizing information,

enabling risk management decisions, addressing threats, and improving from previous

lessons learned [12]. The five Functions are defined below:

• Identify - Identifying possible cybersecurity risks that can affect an organiza-

tion’s resources, assets, data, and capabilities. It enables an organization to

focus and prioritize its efforts of cybersecurity based on identified risks.

• Protect - The ability to limit or contain the impact of a potential cybersecurity

event without affecting the organization’s mission and services.

• Detect - Defines the appropriate actions to identify the occurrence of an anoma-

lous cybersecurity event and enables its timely discovery.

7

• Respond - Defines the reactive activities after a cybersecurity event has been

detected. It is a post-event activity that contains the impact of the detected

cybersecurity event.

• Recover - Establishes the methods to restore the capabilities, assets, and data

that were disturbed in a timely matter after an event has occurred.

2.3 The InfiniBand Architecture

The IBA is a network protocol architecture that is becoming the de facto stan-

dard for server I/O and server-to-server communications for large HPC clusters and

Storage Area Networks. The IBA is comparable to the Ethernet network protocol,

but designed to be implemented in data centers with HPC clusters and logically sep-

arated from the Internet [7]. The development and design of IBA was driven by the

inability of industry standard I/O systems using traditional I/O buses to provide suf-

ficient network bandwidth and reduced memory latency to keep up with processing

performance. IBA was able to improve I/O bandwidth by employing the following

two characteristics: point-to-point connections (not bused) and channel semantics as

messages [3]. In contrast to a bus architecture, the point-to-point connections allow

for scaling of large switched networks along with fault isolation. Additionally, IBA

communicates data and commands via messages instead of memory operations. To

achieve this, the IBA has moved away from the traditional network topology and im-

plements point-to-point switched I/O fabric that uses cascading switches as shown in

Figure 1. This allows InfiniBand to explicitly treat I/O as a form of communication

giving I/O units the same communications capabilities as any processor node [3, 1].

8

Figure 1. IBA Storage Area Network with Fabric Highlighted [1]

2.3.1 Infiniband Components

From a high level perspective, IBA is an interconnect for processors, I/O units,

and routers which can all be considered endnodes. At its smallest, a complete IBA

network can be an IBA subnet which is comprised of endnodes, switches, links, and

a subnet manager [3]. IBA subnets can be connected to other IBA subnets using a

router. Furthermore, endnodes that are part of a subnet can be connected to multiple

switches forming a switched fabric network.

2.3.1.1 Channel Adapters

There are many components that comprise an IBA network but this study will

focus on the Channel Adapter (CA). Every end node that is a part of an IBA network

must have a CA as they are the devices in the network that generate and consume IBA

packets [1]. A CA is defined as either an Host Channel Adapter (HCA) or as a Target

9

Channel Adapter (TCA). The HCA provides the consumer a collection of features

that are specified by IBA verbs whereas the TCA does not have a defined software

interface. A CA is essentially a programmable Direct Memory Access (DMA) engine

that can provide both local and remote DMA that crafts packets in hardware. All

CAs communicate using Work Queues which consist of Send, Receive, and Completion

Queues (discussed in further detail in Section 2.3.4). Each HCA is assigned a Globally

Unique ID (GUID) by the manufacture of the chip. Additionally, each of its ports

is assigned a port GUID that identifies it globally (within a subnet and between

subnets).

2.3.1.2 Subnet Manager

Another important component of the IBA is the Subnet Manager (SM). Infini-

Band’s implementation of routing and forwarding are similar to the concept of SDN

[13]. The routing and forwarding tables for IBA switches and routers are not de-

cided on each device. Instead, the SM is responsible for configuring and managing

all switches, routers, and channel adapters that are part of a subnet [1, 13]. The SM

actively communicates with each switch, CA, and router’s Subnet Manager Agent

to ensure all routing and forwarding tables are correct [7]. The IBA is designed to

allow more than one SM on a subnet at a time for resiliency, i.e., there is only one

master SM with the remaining SMs in a standby status. During subnet initialization,

a polling algorithm is conducted using a state machine that allows all SMs to agree

upon a single master SM based on highest priority. The state machine can be found

in Figure 2.

10

Figure 2. State Machine for Initialization of Subnet Manager [1]

2.3.1.3 Switch

As in other network protocols such as Ethernet, the switch is responsible for

forwarding data from one port to another based upon addresses at the data link

layer. Similar to Ethernet, where forwarding decisions are based upon Media Access

Control (MAC) addresses, IBA switches make forwarding decisions based upon local

identifiers (LIDs). Every destination port within a subnet is assigned a LID by the

SM. Destination LIDs represent a path through which a switch will forward a packet.

Every switch is configured with forwarding tables that include these paths for every

LID within a subnet. Multiple paths to and from destinations can exist: redundancy

and load sharing. It is important that the SM is configured properly to handle multiple

paths when link failures occur or load sharing is desired. IBA supports both unicast

(one to one) and multicast (one to many) functions allowing for Internet Protocol

(IP) applications to function normally over an InfiniBand fabric.

11

2.3.2 Software Architecture

To maintain independence of the host Operating System (OS) and processor, the

IBTA has produced a software architecture that is compatible with all major OSs

[2]. InfiniBand’s software architecture is comprised of kernel modules and protocols

that exist solely in kernel space. Applications that function in user space need not

be aware of the underlying IBA, allowing them to operate using InfiniBand just as

they would Ethernet [2, 1]. A visual representation of the IBA software stack can be

shown in Figure 3. InfiniBand’s kernel space can be divided into three major layers:

upper layer protocols, mid-layer core, and HCA drivers [2].

Figure 3. IBA Software Stack [2]

12

The HCA driver’s role in the IBA is no different than any other I/O device driver.

The I/O drivers allow applications executing in user space to control the hardware

by calling a set of character strings that identify the I/O protocol that the driver

supports. These calls are then interpreted by the device driver and mapped to the

specific device operation that is being called upon by the application [14]. Per the IBA

specification, each HCA driver has its own specific driver that must be compatible

with the mid-layer core kernel modules [1].

The kernel modules located in the IBA’s mid-layer serve many functions that

allow access to multiple HCAs and provide a common set of shared services. Some

of the most notable functions found in the mid-layer include management datagram

(MAD) interface, connection manager (CM) interface, and access to InfiniBand verbs.

Infiniband verbs are an abstract description of operations that take place between the

HCA and host [1]. The mid-layer core provides an interface to these functions for

user application via InfiniBand’s VPI Verbs API. This API enables users to directly

craft packets in hardware using the functions/methods offered, bypassing the kernel

completely, thus enabling the high bandwidth and low latency attributes associated

with InfiniBand. Additionally, the mid-layer implements the necessary mechanisms

that allow user applications to interact and have access to InfiniBand hardware [2].

The last layer of the kernel space to discuss is the upper layer protocols. Upper

layer protocols enable existing applications that employ standard data networking and

file system access to operate over the IBA [2]. Requiring no change to the applications,

upper layer protocols allow the applications to benefit from the high bandwidth, low

latency characteristics guaranteed by the IBA. Although there are many, this study

will focus primarily on two upper layer protocols–IP over InfiniBand (IPoIB) and

RDMA over Converged Ethernet (RoCE)– and how they compare to Remote Direct

Memory Access (RDMA) operations.

13

2.3.2.1 IPoIB, RoCE, and RDMA

IPoIB is an upper layer protocol that implements a network interface over the

IBA. IPoIB encapsulates IP datagrams over an InfiniBand transport service [2]. This

allows any application or kernel module that uses a standard Linux network interface

to use IBA without modification. Applications running IPoIB will still traverse the

TCP/IP call stack within the kernel.

One of the key capabilities provided by IBA is RDMA, which enables data to be

transferred between two servers or between a server and storage without any involve-

ment of the host processor. In traditional networks, applications request resources

from the processor which in turn fulfills the request for the application. This re-

quires significant processor overhead and leads to a large CPU utilization every time

a request is made. With RDMA, the processor is only used to initialize the com-

munication channel which allows the applications to directly communicate and share

resources without processor involvement. RDMA devices allow applications to di-

rectly write and read to virtual memory. This provides low latency through stack

bypass and copy avoidance, reduces CPU utilization, and provides high bandwidth

utilization [15]. The combination of the IBA link layer and IBA software stack com-

prise the RDMA messaging service over InfiniBand.

In addition to the InfiniBand protocol, RDMA can be supported over Ethernet.

This usage is referred to as RoCE. RoCE provides true RDMA semantics over Eth-

ernet [15]. It is the most efficient low latency Ethernet solution today requiring far

less CPU overhead than other RDMA solutions such as iWARP[15]. Like the RDMA

over InfiniBand, RoCE as well uses the InfiniBand Verbs to craft packets for its

applications.

14

2.3.3 IBA Stack Layers

Much like Ethernet and other interconnect protocols, IBA is a stack based commu-

nication architecture that is comprised of the physical, link, network, and transport

layers of the 7-layer OSI network model. The protocol at each layer is completely

independent of the others; yet, the IBA operations at a layer are dependent on the

service of the layer below and provide a service to the layer above. The layers of the

IBA architecture are shown in Figure 4. A brief introduction of each layer is outlined

below:

Figure 4. InfiniBand Architecture Stack Layers

• Physical Layer. The physical layer is responsible for establishing a physical

link, informing the link layer of the current mechanical/thermal status of the

physical link, and informing the link layer whether it is up/down. It specifies

the IBA’s signaling protocol by defining proper symbol encoding, alignment

of framing symbols, and a synchronization method used by valid packets [1].

15

The physical layer establishes the bit rates, media, connectors, and signaling

techniques that are to be used within an InfiniBand network.

• Link Layer. IBA’s link layer specifies packet format, addressing within a

subnet, flow control, and error detection. There are two packet types specified

by the IBA: link management and data packets. Link management packets are

used to carry control information that help configure link width, data rates, flow

control management, and link integrity. Although these packets are commonly

used, this study will focus primarily on data packets. Data packets carry out

IBA operations.

Figure 5. IBA Data Packet Format [1]

As seen in Figure 5, each data packet contains multiple headers. The data link

layer is responsible for creating the Local Route Header (LRH) which identifies

the source and destination ports that switches will use to forward packets. To

accomplish this, the source port places both the source and destination LIDs

16

within the LRH so that the switches can properly forward packets to their

destination.

Flow control is the process of managing data transmission between two nodes

to ensure the sender does not overwhelm the receiver. The IBA handles this

process at the link layer using a credit based method [1]. Credits indicate the

number of data packets that the receiver can accept per Virtual Lane and are

sent periodically from the receiver. If the receiver indicates that it has no more

room for packets, the transmitter discontinues transmission until the receiver

has room.

The last service that is provided by the link layer is error detection. The link

layer is responsible for detecting physical errors, receiver errors, and transmis-

sion errors. To accomplish this, the link layer implements two forms of CRCs:

Invariant CRCs (ICRCs) and Variant CRCs (VCRCs). The ICRC covers all

fields within a packet that do not change during the packet’s lifetime. The

VCRC covers all fields within the packet including those that do change. To-

gether, these CRCs allow routers and switches to change necessary fields while

still maintaining end-to-end data integrity enabling error detection [1].

• Network Layer. The network layer specifies the protocol for routing packets

between IBA subnets. Routing packets between IBA subnets is handled by IBA

routers (not discussed because they are not within the scope of this study).

The routers use the Global Route Header (GRH) to identify the source and

destination Global IDs (GIDs) of the packet. The GID is a combination of

the unique subnet prefix and the ports’ GUIDs. The source places the GID in

the GRH and the LID of the next router in the LRH. As the packet traverses

different subnets, the routers modify the contents of the GRH and LRH in

order for the packets to reach the final destination. However, the GID is never

17

replaced and is protected by the ICRC because it is never changed during the

lifetime of the packet. The last router along the path replaces the LRH with

the destination LID [1].

• Transport Layer. In the typical Ethernet OSI model, the transport layer

ensures logical end-to-end communication between processes. With IBA, the

transport layer ensures the packet is delivered to the correct Queue Pair (QP)

and instructs the QP how to process the data [1]. Additionally, the transport

layer is responsible for segmentation of packets that exceed the MTU and the

re-combination of received packets. Upon creation, a QP is associated with one

of five IBA transport services or one of two non-IBA protocol encapsulation

protocols. These transport services determine the degree of reliability and the

means by which the QP communicates its data. For reliable services, the receiver

sends either an ACK or a NAK to the sender to notify whether the packet was

received or not. Unreliable services do not use acknowledgement messages rather

generate sequence numbers. The sequence numbers are used to detect out-of-

order and missing packets enabling the responder to perform local recovery

processes.

IBA Transport Services:

– Reliable Connection

– Reliable Datagram

– Extended Reliable Connection

– Unreliable Datagram

– Unreliable Connection

Non-IBA protocol Encapsulation Services:

18

– Raw IPv6 Datagram

– Raw Ethertype Datagram

2.3.4 Communication Model

When an end user wants to communicate with another node on the network or

queue up a series of requests that need to be completed by hardware, a work queue is

created. Work queues are typically created in pairs and are used to hold the service

requests that are made by consumers. These pairs are referred to as QPs and consist

of a send queue and a receive queue. A send queue is used for send operations that

hold data informing what information needs to be sent and where from. The receive

queue is used for receive operations that inform the hardware where to place the

data it is receiving from another consumer. After the HCA has executed the QP, a

completion queue event is created that holds the information about the completion of

a work queue that is eventually sent back to the host. QPs can be seen as the virtual

interface that the consumer uses to communicate with the hardware. IBA supports

up to 224 QPs per HCA [1]. Each QP is independent of one another which provides

isolation and protection from other QP operations being performed.

2.3.5 Current Security Features

InfiniBand can be viewed as a layer 2 protocol much like Ethernet. Thus, layer

3-7 application security mechanisms built on top of Ethernet will be implemented

the same way with IBA [16]. Because of this, it is the developer’s responsibility to

implement application encryption, authentication, integrity, and authorization. This

section will address IBA’s claim to overcome known Ethernet vulnerabilities as well

as advanced enforcement mechanisms that are implemented by IBA that claim to

secure physical devices and resources. One such enforcement mechanism is the use

19

of partitioning which provides private access to private devices, and allows access to

shared resources [3]. To prevent unauthorized access to shared resources, a hardware

mechanism called Partition Keys (P Keys) is used. P Keys enforce membership to

a partition by requiring all QPs to be configured to the same partition in order to

communicate. This requirement ensures that a P Key is carried in every data packet

guaranteeing no unauthorized access to shared resources [1]. Furthermore, partitions

are controlled centrally from the SM preventing nodes from determining their own

partitions. This further reduces potential hacking and security holes because it en-

tirely eliminates the ability for the host to manipulate what shared resources it can

have access to [16].

Additional claims are that the IBA eliminates an attacker’s ability to access unau-

thorized destinations, sniff unintended traffic, and impersonate other entities [16].

IBA is a switched fabric that does not allow traffic to arrive at an unwanted node.

The SM implements specific switching tables that are strictly defined at every node

and can only be updated by the SM. Because the switching tables are determined

by the SM at a central location, the host cannot manipulate its own switching table

which prevents traffic from arriving at unintended destinations. Furthermore, IBA’s

two transport services, reliable and unreliable, have security mechanisms that miti-

gate session hijacking and unauthorized access [16]. For unreliable communication,

QPs are created to send and receive traffic. Within these QPs, a Queue Pair Key

(Q Key) is sent with the packet. Upon arrival at a destination, if the Q Key that

is sent with the packet does not match the Q Key that the receiver has, then the

packet is dropped. Likewise, reliable communication services use Q Keys as well as

sequences numbers and CRCs to ensure message security. If any of these mechanisms

are wrong in a packet, it is reported to the SM and all packets are dropped [16].

The last mechanism for security that IBA implements is memory protection. Be-

20

cause IBA uses RDMA, which can raise security issues as node’s directly access an-

other nodes virtual memory, it must implement a mechanism to limit the memory

region nodes have access to. The IBA accomplishes this by issuing a Local Memory

Key (L Key) and a Remote Memory Key (R Key) with every RDMA communica-

tion. The L Key defines the local region of memory that the specific QP has access

to. The R Key is passed to a remote node. When the remote node wants to execute

an RDMA operation, it passes the R Key that it was given to validate the remote

node’s right to access the destination’s memory. This security mechanism cannot

be disabled or changed in software, ensuring memory protection on all IBA devices.

[1, 16].

2.4 Example Application: Vehicle Networks and ADAS

Advancements in vehicle hardware and processing technology continue to promote

new innovations in vehicle networks. The history of modern vehicle networks began

when new electronic sensors and vehicle applications were implemented as stand alone

electronic control units (ECUs) [17]. This led to very complex systems utilizing dif-

ferent network protocols that did not allow for subsystems to communicate with one

another. Eventually, point-to-point communication links were implemented between

individual ECUs, enabling more functionality through data sharing [17]. As expected,

this solution proved to be very inefficient as the complexity of wiring and links in-

creased exponentially as the number of ECUs increased. The solution to this problem

led to the first modern vehicle network: the Controller Area Network (CAN) bus.

The CAN bus is a standard that allows ECUs and other vehicle applications to

communicate with one another on a shared bus. The CAN bus is used to transmit the

majority of all intra-vehicle communication. Specifically, it is utilized to communicate

powertrain and body control information within the respective domains as well as be-

21

ing the standard to retrieve On-Board Diagnostic information about the vehicle [18].

Although the bus network solves the issue of connectivity between ECUs, increasing

the number of ECUs and applications that are connected to the bus creates limita-

tions to the amount of bandwidth available. Previously in the automotive industry,

a vehicle’s network bandwidth consumption was not a concern due to the sensors’

low data rates used in control applications [17]. However, the vehicle bandwidth

requirement has now become a major concern due to Advanced Driver Assistance

Systems (ADAS) and the movement towards autonomous vehicles. In fact, ABI Re-

search Vice President stated that “The emergence of drive-by-wire, the explosion of

in-vehicle sensors for ADAS and automated driving, and the adoption of connected

infotainment, poses new challenges for in-vehicle networking technologies in terms of

cost, bandwidth, cable harness weight, and complexity” [19]. ADAS and autonomous

vehicles require a multitude of sensors, including high-resolution cameras, radars, ul-

trasonic sensors, and LiDARs. Because these technologies require significantly more

bandwidth than typical control traffic, an alternate to the CAN bus must be found

as it can no longer keep up with the timing and bandwidth requirements of future

technologies [18].

Recent developments in the automotive industry suggest that Ethernet may be the

new standard for intra-vehicle communication. Ethernet is a network protocol that

defines how nodes communicate with one another within a wired local area network,

perhaps a vehicle in this case. One of Ethernet’s advantages over the CAN bus is

the increased bandwidth that it has to offer. In the paper [17], a raw bandwidth

requirement calculation was made for an uncompressed 1280x960 pixel resolution

camera stream at 30 frames/s. They concluded that for the transmission of this

video stream, a vehicle network would need to be able to support 884.74 Mbps. This

calculated requirement far exceeds the bandwidth limits of the CAN bus (1Mbps)

22

and is only one of the many sensors needed for driver assistance/autonomy. With

Gigabit Ethernet, this requirement can be met.

The Mobileye EyeQ processor is one example of Gigabit Ethernet implemented

in vehicle networks. It is the leading processor for ADAS and autonomous vehicles,

used in over 15 million vehicles sold as of 2017 [20]. The latest Mobileye EyeQ is the

EyeQ5. The EyeQ5 has dedicated 40Gbps Ethernet to support its sensor interfaces

including high-resolution cameras, radars, and LiDARs [21]. The EyeQ5 can support

additional sensors via PCIe and Gigabit Ethernet Ports with 18Gbps of additional

bandwidth. Clearly, the bandwidth requirement for future ADAS and autonomous

vehicles has far surpassed the limits of the CAN bus and all other vehicle network

protocols. As more innovative technology surfaces and sensors begin capturing more

and more data to be processed, these bandwidth requirements will only continue to

grow. At some point, Gigabit Ethernet may no longer be able to meet the growing

demand of bandwidth and timing constraints, perhaps leading to the adoption of

IBA as a new standard for vehicle networks, one of the many applications outside the

domain of HPC that InfiniBand may be deployed.

2.5 Relevant Technologies

Although this research is focused primarily around the IBA and the services it pro-

vides, it is important to discuss relevant technologies used in this work. Specifically,

Field Programmable Gate Arrays (FPGAs), the Peripheral Component Interconnect

Express (PCIe) bus, and device drivers are presented and discussed in the following

sections:

23

2.5.1 Field Programmable Gate Array

FPGAs are semiconductor devices that can be reconfigured and reprogrammed for

desired application or functionality requirements after manufacturing. FPGAs have

become the standard for digital design and implementation of integrated circuits

due to their unique architecture comprised of programmable logic units, configurable

interconnects, and logic gates [22].

As mentioned before, FPGAs contain an array of programmable logic blocks and

programmable interconnects enabling a multitude of digital designs to be implemented

on the same device. The term “programmable” indicates the ability to reprogram the

functionality of an FPGA after chip fabrication, differentiating FPGAs from Appli-

cation Specific Integrated Circuits (ASICs) [23]. Programmable logic blocks are the

fundamental component of FPGA architecture that are comprised of Look up Tables

(LUTs), multiplexers, and memory elements which provide the user configurable logic

gates. LUTs are customizable pieces of hardware that store an array of values defined

by the programmer. The multiplexer selects the appropriate value stored in the LUT

to use as the output of the logic block. This array of logic blocks is “wired” together

by programmable interconnects. These interconnects enable the implementation of

a variety of circuit topologies by allowing the user to change the connections and

routing between logic blocks and other I/O blocks (e.g. memory) [23]. Hardware

Description Languages (HDLs) are used by developers to create and configure inte-

grated circuits to be programmed onto the FPGAs. HDLs are computer languages

used to describe the digital logic that forms the desired circuit to be placed on chip.

FPGAs are known largely for their ability to accomplish specific tasks much more

efficiently than traditional CPUs. Even though their clock rates are at a much slower

rate than CPUs (hundreds of Mhz compared to Ghz), FPGAs rely on the parallel

nature and optimality of their architecture and resources to accomplish tasks [22].

24

FPGAs optimize primitive resources and operations spatially as opposed to sequen-

tially like CPUs. This spatial organization permits parallelism which allows faster

processing, less instruction overhead, and more active computations within the same

area as compared to that of a CPU [22]. Additionally, the low level nature of FPGAs

allow bitwise operations that are inherently faster computationally than CPUs. Al-

though FPGAs are very efficient in applications that allow parallelism and high clock

to data ratios, their use is not always optimal. Specific examples include complex

calculations and floating point math. Nevertheless, FPGAs are implemented in a

key application relevant to this research: cyber security. Current FPGA applications

in cyber security deal primarily with cryptography and digital key exchanges due to

CPU speed limitations. However, as network protocols continue to increase in speed,

FPGAs will eventually be implemented in other cyber security applications dealing

with network traffic.

2.5.2 Peripheral Component Interconnect Express

The PCIe is a high performance, high bandwidth, general purpose interconnect

implemented as a computer extension card standard for high performance devices

[24]. Its design is an improvement over the previous bus standards of PCI and PCI-

X yet is still compatible with both. The PCIe is a switched lane architecture that

utilizes lanes to communicate packets over point-to-point connections as opposed to

a shared bus[22]. It accomplishes this feature by taking advantage of recent advances

in point-to-point communication, switch-based technologies, and packetized protocols

[24]. A lane is characterized as a set of differential signal pairs: one for transmission

and another for reception. Each differential signal pair in a lane is a dedicated,

unidirectional, serial, point-to-point connection. To scale bandwidth across multiple

lanes, the PCIe specification allows for x1, x2, x4, x8 , x16, and x32 lane widths.

25

Currently, Gen 4 PCIe, the standard interface on all hardware used in this study,

provides an effective 16.0 Gigabits/second/lane/direction of raw bandwidth. To put

this in perspective, a Mellanox Host Channel Adapter Card with a PCIe 4.0 x16

interface provides a raw bandwidth rate of 256 Gigabits/second/direction over the

PCIe interface. However, due to necessary overheard and other system design trade-

offs, the effective performance is lower than specified raw data rate.

As previously mentioned, the PCIe is implemented as a switched lane architecture

via point-to-point connections as opposed to a true shared bus architecture. Previous

interconnect standards were implemented as true shared bus architectures meaning

each peripheral device connected could “listen” to each packet transmission. Con-

versely, the PCIe is implemented much like a switch-based network. Communication

on the PCIe is conducted via Transaction Layer Packets (TLPs). A TLP is a packet

generated by the PCIe protocol to convey a request or completion at the transaction

level [24]. Although the PCIe specification does not use MAC addresses to route

packets, TLPs contain the geographic location in the I/O address space for the desti-

nation device. PCIe switches use the address provided by the TLP to properly route

the packet to the correct I/O address space. PCIe switches connect two or more PCIe

ports which allow TLPs to be forwarded. This discussion of the PCIe illustrates the

complexity of a commonly overlooked technology.

2.5.3 Linux Device Drivers

The host machines used in this research use Linux as an operating system. Thus,

this section deals specifically with Linux device drivers. Device drivers are software

programs that enable users to control and operate hardware devices connected to a

host machine. They hide the low level operations to and from the device from the user

through well-defined internal programming interfaces [14]. Device drivers operate

26

in the kernel space and can access built-in kernel functions to communicate with

peripheral devices. Device drivers can either be compiled into the kernel statically or

can be loaded at run-time as kernel modules. It is standard practice to implement

device drivers as kernel modules as opposed to static device drivers to provide the user

flexibility to add or remove functionality while the system is running. After a device

driver is loaded into the kernel, device files are created into user space to represent

the loaded kernel module. They can then be used to interact with the device through

system calls such as “getchar” and “fread” [22]. This ability establishes device files

as the interface between user applications and device drivers.

All peripheral devices utilized in this research use PCIe as the interface to the host

machine. Thus, it is necessary to discuss PCIe device drivers and how they function.

Upon system boot, all PCIe devices are automatically configured by mapping the

devices’ memory and I/O regions to the processor’s address space. This process is

performed by the kernel and is unique to PCIe devices due to their requirement for

configuration registers [14]. All PCIe devices, whether a graphics card or an FPGA

with a custom image, must abide by the PCIe specification for the host’s kernel to

recognize them as a device. To identify a particular PCIe device in the system, three

configuration registers are used: vendor ID, device ID, and class. These three registers

are then used by the device driver to “look up” the device when the module is loaded.

It is important to note that many device drivers are created by device manufactur-

ers specific to the hardware’s capabilities. In other words, the device drivers cannot

be manipulated to change the hardware’s capabilities. In contrast, PCIe FPGA de-

vices can. As mentioned earlier, FPGAs are re-programmable pieces of hardware that

perform different operations depending on the loaded image. When implemented as

a PCIe device, each image burned onto the FPGA requires an updated device driver

that provides access to the different functionality provided by the image and abides

27

by the PCIe standards. This discussion of device drivers and their relationship with

hardware helps guide the exploration of potential solutions for securing an InfiniBand

network in this work.

2.6 Related Work in IBA Security

Research into the security of IBA began shortly after the formation of the IBTA in

1999. Early studies discovered significant vulnerabilities within the IBA and presented

possible solutions to mitigate them. Additional research evaluated the implementa-

tion of an InfiniBand network rather than the architecture itself, presenting potential

vulnerabilities that were not found in previous studies.

2.6.1 Insights into IBA vulnerabilities

The authors of [8] and [9] identified IBA security gaps and suggested that with

moderate effort, the associated vulnerabilities could be exploited. The work found

two major authentication vulnerabilities. First, IBA’s partitioning keys are sent in

plain-text over the network, and therefore do not fully mitigate the risk of illegal

traffic on a network. The solution for this risk is two key management/distribution

methods: Partition level and QP level. The partition level key management scheme

ensures that all forms of communication inside of a partition are done using the

same shared secret key. Because the QP is the smallest communication entity, the

QP level key management scheme attempts to guarantee integrity and confidentiality

within a partition by implementing a form of temporary session keys between QPs.

Second, the research provided another method for authentication using the ICRC.

The ICRC is normally used as an end-to-end error detection method, however, the

research proposes using it as an authentication tag to further harden IBA’s security

for two reasons. First is that the ICRC does not change as it traverses network hops,

28

and second is that it does not require changing the IBA packet format. This study

concluded that implementation of these two authentication methods to mitigate se-

curity vulnerabilities strengthened IBA’s security without hindering the performance

of the network.

2.6.2 IBA GUID Spoofing

Ethernet MAC spoofing is trivially accomplished and allows for simple attacks

that have been used for many years. Similar to an Ethernet MAC address, IBA uses

a GUID to uniquely specify an HCA. In order to solve the MAC spoofing issue [16],

IBA packets are crafted in hardware, with the GUID residing in firmware and only

changeable via reprogramming the HCA (by flashing the firmware). However, [10]

successfully exploited an InfiniBand network through GUID spoofing. After detailing

the attack, the author also suggested a GUID spoofing mitigation approach, which

relies on a monitoring system to capture an initial link state configuration. After

system startup, the monitoring system sends alerts to an administrator whenever

link state changes occur and LID-GUID matches change because these two changes

are necessary for the attack to be successful.

2.6.3 Security Analysis of InfiniBand Protocol Implementation

In [11], one of the newest studies done on the security of IBA, the research sought

to determine new potential vulnerabilities of the protocol’s implementation which

they claim is still missing in literature. The research performed a static code analysis

as well as a dynamic analysis of the protocol’s implementation. The static code

analysis employed multiple tools listed in the study that inspected all lines of code that

defined IBA and identified potentially vulnerable functions. The dynamic analysis

was performed via “fuzz” testing in which inputs are carefully crafted and the output

29

response is monitored for known vulnerabilities. The study concluded that there were

no significant security vulnerabilities in the protocol itself, however, three functions

were potentially vulnerable that they recommend be replaced.

2.6.4 A Framework for Cyber Vulnerability Assessments of Infiniband

Networks

A cyber vulnerability assessment was conducted on the IBA network to determine

the possible cyber vulnerabilities that may be present for IBA in [7] and concluded

that some cybersecurity aspects of InfiniBand have yet to be thoroughly investigated.

The InfiniBand Architecture was designed as a data center technology, logically sep-

arated from the Internet, rendering defensive mechanisms such as packet encryption

unnecessary. To date, nefarious actors do not appear to have taken a significant in-

terest in InfiniBand, but that is likely to change as the technology proliferates. This

paper considers the security implications of InfiniBand features and proposes key el-

ements that would be useful in a technical Cyber Vulnerability Assessment [7]. The

results from the Cyber Vulnerability Assessment suggest a few potential tools and

mitigation techniques that could be adapted by the IBA to include hardware and

software cyber tools. The most interesting of the proposed solutions was the idea of

moving towards an SDN approach in fabric management. As mentioned previously

in [10], a proposed method of preventing GUID spoofing from occurring in an IBA

network would be to implement a monitoring system. A way in which this might be

implemented is to use an SDN approach as proposed by [7]. The Cyber Vulnerabil-

ity Assessment concluded that although cyber security was not a high priority when

developing the IBA, it is inherently resistant to many cyber attacks.

30

2.6.5 An FPGA implementation for a high-speed optical link with a

PCIe interface

This study [22] sought a solution to overcome performance bottlenecks in Ether-

net and InfiniBand based networks to achieve speedup for multi-node and multi-GPU

computing platforms. The solution was to implement an optical fiber high speed in-

terface between two devices using FPGAs. The FPGA acted as the physical interface

between the fiber optic link and the computer via the PCIe. Additionally, a Linux

device driver was used that enables applications on the host computer to interact

with the optical link used during the experiment. The study was able to successfully

transmit and receive messages at over 8.5 Gbit/s which exceeded the previous works

in this area. This study relates to this thesis study due to its use of FPGAs, a high

speed fiber link, and its detailed explanations of driver implementations. It lays out

the groundwork for creating a new network interface other than Ethernet and Infini-

band which allows for greater insight into how the IBA is employed and how it can

be altered to add security features.

2.7 Summary

This chapter began by providing a brief description of the NIST framework and

highlighted the core functions that ultimately guide the direction of this research.

The chapter then continued to describe the basics of the IBA, its functionality, and

the security mechanisms implemented to ensure security. Relevant technologies to

the research were briefly discussed as well as a possible application for InfiniBand:

Vehicle Networks. By mentioning the possible application of InfiniBand in Vehicle

Networks, it becomes obvious that a further investigation into the IBA is needed.

IBA was designed for HPC use and therefore its security was scoped to examine

common applications that are used in HPCs. Thus, with new potential InfiniBand

31

applications, the security landscape must be expanded as new vulnerabilities could

be present.

32

III. Infiniband Case Studies

3.1 Objective

Past research into the security of InfiniBand occurred within the HPC domain

and focused primarily on its architecture. Thus, the current security landscape of fu-

ture InfiniBand applications remains unknown. To obtain this knowledge, three case

studies are performed. The goal of these case studies is to explore how to secure an In-

finiBand Network and to analyze the potential effects that a security implementation

might have on the network/architecture. In particular, this work will examine the

difficulties of implementing well-known network security systems on multiple types of

InfiniBand applications to demonstrate potential security limitations. Additionally,

effects on network bandwidth will be examined to determine the performance impli-

cations of securing InfiniBand and how alternate methods may have to be used to

achieve the desired speeds associated with this architecture.

3.1.1 Testbed Setup

The IBA allows for Ethernet and InfiniBand protocols to coexist on the same

network and device without changing the application software. This is supported by

the InfiniBand Verb construct that allows the application to communicate directly

with the hardware that crafts the traffic. This research therefore includes studies that

use both the InfiniBand and Ethernet interconnect protocols. Mellanox was chosen

as the primary hardware supplier as they are the largest producer of InfiniBand

technology solutions and services, some of which include Ethernet support. The

main network configuration that will be used in this research is found below:

Ethernet 10GbE with Connect-X 5 Adapter. The network configura-

tion used in this study is shown in Figure 6. This configuration is comprised of two

33

host machines, each with a Connect-X 5 adapter. The two Connect-X 5s are con-

nected “back-to-back” via a 10GbE Active Optical Cable (AOC). For this example

program, no switch is required, and the Ethernet protocol will be used for interconnect

traffic.

Figure 6. Network Diagram of Ethernet 10GbE with Connect-X 5 Adapter.

IPsec Configuration. The following configuration is used for all tests that

implement IPsec:

• Encryption algorithm: AES-GCM 128/256-bit key, and 128-bit ICV

• IPsec operation mode: Transport mode

• IPsec protocol: ESP

• IP version: IPv4

IProute2 is a user application that controls TCP/IP network flows which is nec-

essary to implement the above IPsec configuration. IProute2 is used for this entire

study.

Kernel Bypass Implementation. Kernel bypass is a key feature that al-

lows for low latency and high bandwidth communication over InfiniBand networks. A

program written with InfiniBand Verbs will bypass the host machine’s kernel, whether

using RDMA or raw Ethernet packets. A typical application written with InfiniBand

verbs implements the following procedure:

1. Get the device list.

34

2. Open the requested device.

3. Query the device capabilities.

4. Allocate a Protection Domain to contain your resources.

5. Register a memory region.

6. Create a Completion Queue.

7. Create a Queue Pair.

8. Bring up a Queue Pair.

9. Post work requests and poll for completion.

10. Cleanup.

For this study, a custom kernel bypass program was written to demonstrate the

potential effects that a security implementation might have on an InfiniBand net-

work via a raw Ethernet client/server model. In this model the client sends prebuilt

TCP/IP packets to a server. The server receives any packets destined to its MAC ad-

dress. Although this program is sending raw Ethernet packets, this simply describes

the type of QP that will be established between the two devices and will still abide

by the IBA specification.

This program is used in two of the three following case studies as shown in Table

2. Case Study 1 demonstrates the ability to monitor traffic that bypasses the kernel

on a host machine. Case Study 2 explores the implications of bypassing the kernel

with network security systems in place, specifically IPsec. Case Study 3 examines the

performance impact of implementing IPsec on a program that does not bypass the

kernel.

35

Case Study: InfiniBand Client/Server iPerf
1: Traffic Monitoring X
2: IPsec Implementation X
3: Network Performance X

Table 2. Overview of Programs used in Case Studies.

3.1.2 Case Study 1: Traffic Monitoring

The first case study examines the ability of an InfiniBand application to bypass

a kernel by executing the previously mentioned Client/Server program. Wireshark

and tcpdump are used to explore the possibility of monitoring InfiniBand traffic with

common network monitoring tools. Both applications are packet analyzers that use

the library libpcap to sniff packets entering or exiting a host machine. Libpcap is

an API that allows applications to capture and analyze link layer packets traversing

the kernel. Because its implementation occurs in the kernel, and the Raw Ether-

net Client/Server program is written to illustrate bypassing the kernel, another tool

should be used to capture traffic that does bypass the kernel: Mellanox’s Offloaded

Traffic Sniffer. The Offloaded Traffic Sniffer is defined in the MLNX OFED and uses

the standard capabilities of the utility Ethtool to capture packets in hardware. These

packets can then be analyzed in packet analyzer programs such as tcpdump. The

confirmation of a kernel bypass occurs if packets sent with the program can only be

captured with the Offloaded Traffic Sniffer.

This case study uses the Ethernet 10GbE with Connect-X 5 Adapter network

Configuration. The first test uses Tcpdump in an attempt to capture the TCP/IP

packets being transmitted. The second test enables the Offloaded Traffic Sniffer to

determine if the packets have bypassed the kernel. The Raw Ethernet Client/Server

program has two executables: Receiver and Sender. The Receiver program represents

the server and the Sender represents the client. During execution, both programs

report each successful message transmission to the user by polling the Completion

36

Queue. If the program is not successful in bypassing the kernel, the TCP/IP packets

are captured by tcpdump and can be opened and analyzed in Wireshark without

utilizing hardware offload. These two tests (with and without offloaded traffic sniffer)

execute the following steps:

3.1.2.1 Without Offloaded Traffic Sniffer.

1. Configure both the server and client host machines to enable IPoIB. This allows

QPs to be established based on IP addresses rather than GUIDs.

2. Start Receiver on the server (192.168.1.3). Receiver must be run as root to

create QPs.

3. Initiate Tcpdump on the server and specify the appropriate interface to capture

packets on.

4. Run Sender on the client (192.168.1.1) to send pre-formatted TCP/IP packets

to the receiver.

5. After 10 seconds of capture, terminate tcpdump and save packets to a .pcap

file.

6. Terminate both programs on server and client machines.

3.1.2.2 With Offloaded Traffic Sniffer Enabled.

1. Enable the Offloaded Traffic Sniffer by entering the below command where

“enp9s0f0” is the desired interface:

$ ethtool --set -priv -flags enp9s0f0 sniffer on

2. Repeat steps 2-6 from the previous experiment.

37

If the Raw Ethernet Client/Server program bypassed the kernel successfully, the

pre-formatted TCP/IP packets that were sent would only be captured with the Of-

floaded Traffic Sniffer enabled.

3.1.3 Case Study 2: Implementation of a Network Security System on

InfiniBand Verbs.

This case study examines the impact of implementing a network security system on

an InfiniBand program. For traditional Ethernet networks, there are many network

security systems capable of monitoring and controlling network traffic on the host

itself. Below is a list of commonly used systems and a short description of each:

• Firewalls: Establish a barrier between trusted and untrusted networks by

monitoring and controlling packets entering and leaving the host

• Host-Based Intrusion Detection Systems: Signature and anomaly based

applications that monitor network traffic at the host as well as dynamically

monitoring a system state

• Deep Packet Inspection: A method of examining the contents of the payload

rather than the headers of the traffic

• Secure Network Protocols: Protocols that are used to secure data in transit

to prevent unauthorized access (IPsec, SSL, and SFTP are all examples)

A similarity between the previously listed security systems is that they are com-

monly implemented as kernel modules that enforce security policies based upon in-

formation found within the kernel. This raises the question, “How can these systems

enforce security on packets that bypass the kernel?”

38

This study explores the implications of implementing IPsec on an InfiniBand ap-

plication. IPsec will be the focus of this study because of its ability to secure commu-

nications within a network. Because of this, IPsec proves to be valuable in securing

computer communications between critical infrastructure sectors. As mentioned pre-

viously, IPsec is a secure network protocol that provides authentication, integrity,

and confidentiality between two IP devices and is implemented as a kernel module.

Based on the IPsec security policy configured by the user, the IPsec module receives

packets from an application based on the source and destination IP addresses and

encrypts the packets using a specified algorithm in the TCP/IP stack kernel layer.

In particular, this case study will determine whether or not IPsec can be executed

on an InfiniBand program sending TCP/IP packets. For this experiment, the Ether-

net 10GbE with Connect-X 5 Adapter network Configuration is used. The InfiniBand

program that is studied is the Raw Ethernet Client/Server program. Additionally,

this case study assumes that the Offloaded Traffic Sniffer must be enabled to capture

packets for InfiniBand programs. The steps to conduct this test are listed below:

1. Configure both the server and client host machines to enable IPoIB. This allows

QPs to be established based on IP addresses rather than GUIDs.

2. Start the Receiver on the server (192.168.1.3). Receiver must be run as root to

create QPs.

3. Initiate Tcpdump on the server with the Offloaded Traffic Sniffer enabled and

specify the appropriate interface to capture packets on.

4. Run Sender on the client (192.168.1.1) to send pre-formatted TCP/IP packet

to the receiver.

5. After 10 seconds of capture, terminate tcpdump and save packets to a .pcap

file.

39

6. Terminate both programs on server and client machines.

7. Implement the IPsec configuration described previously using the IProute2 util-

ity

8. Repeat Steps 2-6

9. Compare the .pcap files to determine if IPsec was executed.

If IPsec was executed on the InfiniBand program, the second set of packets cap-

tured would be in the form of Encapsulated Security Packets (ESP), and packet ex-

amination would reveal the encryption. This demonstrates a successful execution of

IPsec because the TCP/IP packets are now encrypted with the configured algorithm.

3.1.4 Case Study 3: Performance of Software-Based Security

The third case study examines the effects of implementing a security system on an

application that does not bypass the kernel. As mentioned earlier, IPoIB encapsulates

TCP/IP packets after they have traversed the TCP/IP stack in the kernel. Thus,

a program that uses IPoIB does not bypass the kernel and will allow IPsec to be

executed on its packets. The program used to evaluate the performance of IPsec

on an InfiniBand network is iPerf, a network performance application that tests the

maximum throughput a device can handle. iPerf was selected as the demo application

for this test because it replicates the client/server model and sends TCP/IP packets

in the same manner as the Raw Ethernet Client/Server program. Using a 10GbE

cable, iPerf produces a bandwidth slightly under 10Gbps.

Because IPsec’s high computing power requirement can limit network throughput

performance, it is essential to measure bandwidth with and without IPsec. A total

of 10 tests are run in random order: five with Ipsec and five without Ipsec. Each test

40

records 300 samples. Each sample is the average bandwidth of a one second interval.

The steps to perform each test are:

1. Reboot both Server and Client machines.

2. Configure IPoIB on both server and client with the correct IP configurations.

3. (If using IPsec) Implement IPsec according to the configuration in Experiment

Setup

4. Execute iPerf on the server (192.168.1.3) specifying the server’s IP address.

5. Run iPerf on the client (192.168.1.1) specifying the client’s IP address, the

server’s IP address, and transmission time.

6. Capture 310 samples, and discard the first 10 to account for ramp-up.

7. Terminate both server and client iPerf programs once specified time interval has

been reached.

The results of this case study analyzes to determine the performance effect of

executing IPsec on an InfiniBand network.

3.2 Results

This section presents the results of the three Case Studies that were performed

along with the implications of each on overall network security in an InfiniBand

network.

3.2.1 Case Study 1: Results

This study was designed to explore the security implications of bypassing the

kernel with an InfiniBand program. In particular, this study examined the effect

41

bypassing the kernel had on the ability to monitor InfiniBand traffic. The first test

of this study used the network analyzer tcpdump to attempt to capture packets on

the server machine.

Although the test successfully registered message completions back to the server

and client sides of the program, the test resulted in exactly zero packets captured on

the specified interface using tcpdump/Wireshark with the Offloaded Traffic Sniffer

disabled. This indicates that the InfiniBand program did indeed bypass the kernel

completely, because messages were successfully transmitted yet were not captured

in the kernel (recall that tcpdump uses libpcap which is implemented as a kernel

module). This implies that, to be successful, any effort to monitor InfiniBand traffic

must be executed outside of the host machine’s kernel.

The second test in this study follows naturally from the first, and seeks to monitor

InfiniBand traffic outside the host machine’s kernel. After enabling the Offloaded

Traffic Sniffer, the InfiniBand Client/Server program was executed again. This time,

the .pcap file recorded by tcpdump did capture packets. A screenshot of the first five

packets analyzed in Wireshark can be found in Figure 7.

Figure 7. Wireshark Analysis of Captured InfiniBand Packets.

As seen in Figure 7, the exact pre-formated TCP/IP packets created by the Infini-

42

Band Client/Server program are captured. This result has two implications. First,

InfiniBand programs can successfully send Ethernet TCP/IP packets without travers-

ing the TCP/IP stack in the kernel suggesting a potential limitation with security

applications that are executed in the kernel. Second, monitoring InfiniBand traffic

is possible with the assistance of the Offloaded Traffic Sniffer, implying the need for

hardware implementation of traffic monitoring.

3.2.2 Case Study 2: Results

Case Study 2’s intent was to determine whether or not IPsec could be implemented

on an InfiniBand program sending TCP/IP packets. IPsec is executed within the IP

layer of the kernel stack when a TCP/IP packet is formed. Thus the question is, if

TCP/IP packets are created by an InfiniBand program, can IPsec be implemented

on those packets securing that channel?

The first half of the experiment executes the InfiniBand Client/Server program

without IPsec just as in Case Study 1. Accordingly, the results from the first half

of Case Study 2 are identical to the ones in Figure 7 from Case Study 1, illustrating

the successful transmission of TCP/IP packets. The highlighted data section of the

packet is sent in plain-text and is not encrypted. The second half of the experiment

runs the InfiniBand Client/Server program again with IPsec implemented. These

results can be found in Figure 8.

The results reveal that IPsec was not executed on the InfiniBand Program. If

IPsec was executed correctly, the protocol of the captured packets would no longer

be Transport Control Protocol (TCP) but would be Encapsulated Security Payload

(ESP), and the payload of the packets would be encrypted using the AES-GCM algo-

rithm and would no longer be human readable. This Case Study demonstrates that

because the IPsec is executed in the kernel stack, and the InfiniBand Client/Server

43

Figure 8. Wireshark Analysis of InfiniBand Packets with IPsec.

Program bypasses the kernel, IPsec cannot be implemented on programs that use

InfiniBand verbs. Thus, a need for a different solution outside of software exists.

Furthermore, this experiment suggests that many other security systems that are

implemented in the kernel cannot be implemented on InfiniBand programs either.

3.2.3 Case Study 3: Results

After determining that IPsec could not be implemented on an InfiniBand program

written with InfiniBand verbs to bypass the kernel, the next logical step is to find a

program that would allow IPsec execution and evaluate its effect on the performance

of the network. Unlike the InfiniBand Client/Server program, iPerf is a TCP/IP

application that requires the use of the Upper Layer Protocol IPoIB. Because it

requires IPoIB, the generation of iPerf’s TCP/IP packets occurs within the kernel

stack. Because the implementation of IPsec takes place within the kernel, IPsec can

be executed on the packets being transmitted by iPerf.

Test: Mean(Gbps) Max(Gbps) Min(Gbps) Std Dev
iPerf no IPsec 8.636 9.40 6.30 0.247

iPerf with IPsec 2.359 2.65 1.93 0.112

Table 3. Case Study 3 results.

44

Based on the results in Table 3, it is evident that IPsec implementation drastically

reduces the network performance. The average bandwidth with IPsec implementation

has been reduced to 27.3% of the original. A key reason for this is that IPsec,

along with many other network security systems, requires significant resources and

CPU utilization that limit network performance. A possible solution may reside in

hardware. Offloading IPsec processes to hardware may reduce CPU utilization, speed

up encryption algorithms, and increase the network’s bandwidth. Additionally, the

use of hardware may solve other issues found in the previous case studies. Together,

these case studies demonstrate that if a traditional security system is to be executed

on an InfiniBand network, the application must traverse the kernel. This thwarts

the performance benefits of InfiniBand entirely. We contend that a security hardware

offload may be able to overcome both of these challenges.

3.3 Conclusion

This chapter explored the implications and limitations of securing an InfiniBand

network with traditional Ethernet practices by conducting three case studies. Case

Study 1 demonstrated that InfiniBand traffic cannot be monitored or captured with

traditional network analysis tools due to hardware packet generation that bypasses

the kernel completely. Case Study 2 illustrated the impact of bypassing the kernel,

suggesting that any network security system implemented in software (specifically the

operating system) will be ineffective when used with an InfiniBand program using

IBA verbs. Case Study 3 revealed the detrimental performance impact that using a

network security system on InfiniBand would have. The three case studies concluded

that traditional network security practices used for Ethernet networks cannot be

directly translated to InfiniBand networks urging the creation of a new class of security

system capable of overcoming the hurdles found in this work: a hardware offloaded

45

security system.

46

IV. Hardware Security Solutions

4.1 Objective

The results of the previous case studies motivate the need to tailor network se-

curity systems specifically for InfiniBand when traditional Ethernet practices are not

sufficient. This chapter provides an assessment of hardware devices that have the

potential to secure an InfiniBand network via a hardware offloaded security system.

The desired security requirements are discussed and determined based on the NIST

Framework. A procedure is presented that describes the exploration approach taken

for each selected device. A description of all hardware devices as well as their the-

oretical implementations are presented and compared against one another. Existing

device security features and limitations are evaluated to find potential InfiniBand

security solutions. The implications of these findings are then analyzed based on the

defined requirements to guide future research in an InfiniBand hardware offloaded

security system.

4.2 Possible Technology

ASIC devices offer extremely high performance combined with low power con-

sumption providing the advanced capabilities needed for the IBA. When considering

possible solutions for an offloaded security system, it is intuitive to consider ASIC

devices as all InfiniBand HCAs are implemented as ASIC devices. However, the flex-

ibility of an ASIC device is limited due to the pre-defined functions of the device that

prevent certain work offloads (such as a security system) from being implemented

[25]. Because of this, similar technologies such as FPGAs and System on Chips

(SOCs) are considered as they offer advantages in ease of programming and flexibil-

ity while providing similar performance. Two FPGA devices are explored which offer

47

high performance, open programmability, and can theoretically implement any type of

functionality within the constraints of the available gates [25]. Despite its advantages,

FPGAs are notoriously difficult to program as they use low level HDLs rather than

high level software programming languages. HDLs require the user to describe the

structure and behaviour of digital circuits synthesized as hardware whereas software

programming languages abstract low level implementation to describe sequences of

logical and mathematical expressions executed by the CPU. Thus, a second technology

is used to explore a hardware offloaded security system: SOC. SOCs, programmable

with common high level programming languages, offer the highest flexibility with

similar performance. This accessible programming model eases the development of

customized applications.

4.3 Requirements

The NIST Cybersecurity Framework provides five fundamental functions that help

guide a successful and holistic cybersecurity program [12]. Thus, these functions are

used to determine the capabilities required to secure an InfiniBand network. The

three functions taken from the NIST Framework to define what it means to secure

an InfiniBand network are Protect, Detect, and Respond. The omitted functions,

Identify and Recover, are out of scope of this effort, as the focus of this research

relates to a network security system, not an entire cybersecurity program. These

two functions provide a high-level, strategic view of an organization’s management of

cybersecurity risk and cannot be confined to an individual security system.

Protect The Protect Function is used as a guideline to limit and/or contain

the impact of potential cybersecurity events. Whether these events are malicious or

anomalous, it is essential that a hardware device is able to Protect InfiniBand network

48

traffic against them. In particular, the cybersecurity outcome of the Protect Function

that we will focus on is Data Security [12]. Data Security protects the confidentiality,

integrity, and authenticity of all information transmitted and received. Thus, a device

that is capable of securing an InfiniBand network against malicious cyber events must

protect the confidentiality, integrity, and authenticity of network traffic.

Detect The Detect Function provides the development and implementation

of required steps to identify cybersecurity events in a timely manner. A timely discov-

ery of cybersecurity events ensures the potential impact of the threat is understood

so that appropriate measures are taken. In order to Detect cybersecurity events on

an InfiniBand network, a device must be able to inspect/monitor network traffic both

to and from the host machine. A device with this capability provides the necessary

security desired to Detect malicious and anomalous events on an InfiniBand network.

Respond After detecting the occurrence of a cybersecurity event, the Re-

spond Function defines the appropriate activities required to contain the potential

cybersecurity incident. For securing an InfiniBand network, the desired response is

Mitigation. By mitigating the detected cybersecurity event, the expansion of the

event and its associated effects are prevented, resolving the incident [12]. For a

security device to mitigate an anomaly, it must have the ability to filter, stop, or ma-

nipulate network traffic to contain/mitigate the newly identified vulnerabilities. This

capability allows for the offloaded security system to take the appropriate actions.

Inline at Line Rate In addition to providing the three security requirements

derived from the NIST Framework, securing an InfiniBand network must be done

inline at line rate. For this research, line rate indicates that the network security

system does not limit the rate at which bits are transmitted. InfiniBand is utilized

49

primarily for its high speed, low latency capabilities. Thus, an inline implementation

not at line rate would conflict with the desired performance provided by the IBA. A

security device able to Protect, Detect, and Respond to cybersecurity events inline,

at line speed provides efficient use of the CPU resources and can be implemented into

a network application without affecting the network performance.

4.4 Exploration Approach

Figure 9. Security Device Exploration Method

For each selected device, a procedure similar to the one in Figure 9 is conducted

and is broken down into three distinct phases. Before Phase 1 begins, a hardware

device is selected and the available security capabilities advertised by its manufac-

turer are identified. Three hardware devices manufactured by Mellanox were selected

for this research. Phase 1 describes the Device Setup and begins by deploying the

selected device in a suitable environment and configuration within an InfiniBand net-

work. If the product is properly supported by the vendor, the correct and updated

50

software/firmware are then installed and configured enabling the initialization of the

security services provided. If the security services can not be initialized successfully,

further exploration into the device is halted and the device’s theoretical implementa-

tion is evaluated against the security requirements instead. Successful initialization

of the services leads to Phase 2 of the exploration approach. The device’s pre-existing

security capabilities are identified and then exercised. The device’s security capability

is then evaluated on its ability to meet the requirements for securing an InfiniBand

network. If the device is not programmable, the findings and implications of the

device are analyzed and exploration is halted as its security limitations have been

reached. If the device is programmable, the security limitations have not yet been

reached and the exploration approach transitions to Phase 3, which begins with the

design of a custom security application. The custom security application is developed

to meet the Protect, Detect, and Respond requirements of securing an InfiniBand

network. The inline at line rate requirement is not considered during development

as it relies on the hardware to provide this capability. Once developed, the security

application is implemented and its security limitations are evaluated. The findings

and implications associated with the selected device are analyzed and the exploration

is complete.

4.5 Hardware Accelerated Security Protocol

The first hardware device examined is the Mellanox Innova IPsec Adapter. This

device was selected because it comes pre-configured to offload the established IPsec

security protocol to hardware. This device uses the Connect-X 4 HCA to provide the

InfiniBand network capabilities and a bump-in-the-wire FPGA to offload the IPsec

security protocol. This device was developed to combat the growing concern for se-

curity and privacy in large data centers. In fact, Mellanox states, “Growing concerns

51

over traffic interception, as well as the collection and use of unencrypted information,

have kindled a global desire for privacy protection. This has led to a massive in-

crease in the use of encryption to protect data-in-motion and data-at-rest in the data

center” [26]. Encryption is progressing as the standard in cloud-based applications

as it provides both confidentiality and integrity to the data being shared. Unfortu-

nately, encryption is very CPU intensive. Oftentimes, encryption requires more CPU

resources than the actual application, which limits overall network performance. The

results from Case Study 3 confirm this. Additionally, software/CPU based encryption

cannot scale to meet the growing demand and speed needed to process the data [26].

Implementing an offloaded security system on the Innova IPsec has the potential to

overcome this hurdle.

The Innova IPsec Adapter is capable of offloading the computationally intensive

encryption and authentication tasks from the CPU to its FPGA-based AES-GCM

cryptographic engines [27]. By doing so, the Innova IPsec Adapter eases network

bottlenecks by freeing valuable CPU resources which allows the execution of the ap-

plication to be the focus of the processor. The architecture used to accomplish this

task is very unique as the FPGA offloads the IPsec protocol via a “bump-in-the-wire”

architecture. Other IPsec acceleration devices are built using look-aside architectures

comprised of a single CPU and a PCIe hardware encryption accelerator[26]. Packets

are moved from the CPU to the accelerator for encryption/decryption, then back

to the CPU to either be received by an application or transmitted on the network.

This is neither simple nor efficient as the CPU is now responsible for multiple flows

of network traffic, consuming unneeded CPU resources, and limiting overall network

performance. In contrast, the Mellanox Innova IPsec’s bump-in-the-wire architecture

is efficient and simple as the packets being transmitted/received are encrypted/de-

crypted as the packets pass through the network card. As seen in Figure 10, the

52

encryption and decryption of the IPsec packets occurs inline with the network flow

allowing the ConnectX-4 HCA to provide the InfiniBand network services with the

IPsec encrypted packets This unique feature in addition to protecting the confiden-

tiality, integrity and authenticity of InfiniBand traffic is why the Mellanox Innova

IPsec was chosen as one of the devices to be evaluated as a potential solution to

securing an InfiniBand network [27].

Figure 10. Mellanox Innova IPsec Adapter

53

4.5.1 Procedure

This section explores security capabilities and limitations of the Mellanox Innova

IPsec adapter.

Like standard Mellanox HCA devices, the Innova IPsec is a PCIe device. Thus,

the first step in this exploration was to deploy the device into an operational Infini-

Band network and ensure the Mellanox drivers were correctly installed on the host

machine. The proprietary device drivers for the Innova IPsec allow user interaction

to the unique functionality available both by the Connect-X 4 and FPGA. After the

hardware and drivers were installed, the appropriate FPGA and HCA firmware im-

ages are loaded. The FPGA image contains the digital logic that implements the

IPsec cryptographic engines provided by Mellanox. The firmware image enables the

Connect-X 4 to communicate and interact with the FPGA. To accomplish the burn

and load of images, Mellanox’s Mellanox Software Tools (MST) service will be used.

Mellanox documentation refers to burn as the act of writing a firmware/binary image

to a flash device. Furthermore, the documentation refers to load as the selection of an

image from the flash device to be used by the targeted device. All Mellanox devices

(HCAs, FPGAs, switches, etc.) have associated flash devices to which firmware and

binary images are burned. Once burned onto the flash device, the firmware or binary

image are loaded from flash onto the device. The MST service is a set of manage-

ment and debug software tools that allow users to interact with InfiniBand devices.

In particular, the MST flint tool is used to accomplish the burn of the firmware image

onto the Connect-X 4 HCA and the mlx fpga tool is used to burn FPGA image. The

burn of the FPGA image is carried out first.

When initiating the MST service on the host machine and querying for InfiniBand

devices, only the Connect-X 4 appeared, not the FPGA. The MST service was then

restarted using an additional argument –with fpga. By doing so, the MST service

54

uses an additional driver to interact with the FPGA on the adapter: the FPGA tools

driver. Essentially, this additional device driver is utilized to interact with the FPGA

on the Innova IPsec adapter and is discussed further in this chapter. After restarting

the MST services with the –with fpga argument and querying devices, the FPGA de-

vice was still not appearing. The reasoning for this was that the Innova IPsec was in a

recovery mode as the factory image was not properly loaded preventing normal access

to the FPGA. To overcome this, the MST service was once again restarted with the

–with fpga fw access argument. This argument allowed the MST service to load the

Factory Image to the FPGA via firmware rather than the FPGA tools driver. After

the successful restart of the MST service with the –with fpga fw access argument, the

FPGA device was now successfully populating when queried. As mentioned previ-

ously, the Innova IPsec was in a recovery mode and needed the Factory Image loaded

onto the FPGA. Using the mlx fpga tool, the Factory Image was now loaded onto the

FPGA. After restarting the MST service with the –with fpga argument, the ability

to read/write to the FPGA on the Innova IPsec was available. To enable the IPsec

offload, the provided IPsec FPGA image is burned and then loaded. The standard

burn of the IPsec image uses RDMA rather than I2C as the means to burn FPGA

images as it is much more efficient. However, due to the initial recovery mode of the

FPGA, the RDMA functionality was not available and I2C was utilized to accomplish

the burn. The burn of the IPsec image took roughly three hours, but was successfully

loaded to the FPGA offloading the IPsec protocol.

To ensure successful loading of the IPsec protocol to the FPGA, a secure con-

nection similar to that in Case Study 3 is utilized. The difference between the two

connections is a custom version of Iproute2 provided by Mellanox. This version of

Iproute2 exposes new flags to the user that provide the option to offload IPsec secu-

rity associations to the Innova IPsec. Now when opening an IPsec secure connection,

55

the following flags will be used to specify the desired offload device and the direction:

offload dev < device > dir in/out

After creating an IPsec secure connection, the crypto offload parameters were checked

to verify that the IPsec protocol was indeed offloaded to the Innova IPsec adapter.

The crypto offload parameters were checked by querying the state of the ip xfrm

utility (the utility that Iproute2 uses to open an IPsec connection). These parameters

indicate the state of the offload device. Upon inspection, the parameters were not

present. This indicated that the encryption/decryption of the IPsec protocol is not

offloaded and is still being performed in the kernel.

The initial thought to overcome this challenge resided with the firmware of the

Connect-X 4. The current firmware image for the Connect-X 4 on the Innova IPsec

was not the one included with the IPsec FPGA image. This is potentially because

the IPsec protocol was not successfully offloaded to the FPGA and why the RDMA

burn could not be utilized to load the IPsec image. The firmware provides the HCA

the appropriate set of instructions on how to communicate and interact with other

hardware devices so the incorrect firmware image would prevent the HCA from com-

municating with the ”bump-in-the-wire” FPGA. Using MST flint (the Mellanox tool

used to update and burn firmware on HCAs), the Connect-X 4 was flashed with the

provided firmware image in the IPsec bundle. In the event that the new firmware im-

age enabled the RDMA burn functionality, the burn of the IPsec image to the FPGA

was re-attempted. Despite the new firmware image, the RDMA functionality was

still not available and the IPsec burn accomplished with I2C. After the burn and load

of the IPsec image onto the FPGA, the loaded image was queried to verify its suc-

cess. Previous queries before this displayed that the User image was loaded; instead,

the current image now said “Factory Failover Image”. Despite this error message,

56

an IPsec secure connection was opened to offload the encryption/decryption IPsec

protocol. The state of the offload device was again inspected, and the crypto offload

parameters were still not found indicating the IPsec protocol was not offloaded from

kernel space. Because the initialization of security services were unsuccessful, further

exploration was halted and the theoretical implementation will be examined instead.

4.5.2 Findings and Implications

The exploration of the Mellanox Innova IPsec proved unsuccessful in offloading

the IPsec encryption and authentication tasks. This appears to be a result of compat-

ibility issues between the IPsec FPGA image and the Connect-X 4 firmware image.

Each time a new firmware or FPGA image was loaded, a factory failover error was

displayed indicating a corruption with one of the images. Due to the discontinu-

ation of the product, additional FPGA/firmware images that might work with the

current device were not available. Although the lack of vendor support prevented

successful exploration of the capabilities of the Innova IPsec adapter, the theoretical

implementation merits discussion.

The key attribute of the Innova IPsec is its ability to protect network traffic at

line rate via encryption and authentication. Encrypting network traffic protects the

confidentiality, integrity, and authenticity of all data that passes through the adapter.

By doing so, the Innova IPsec can secure internal networks from unauthorized access

and eavesdropping replacing/supplementing the need for perimeter security [26]. This

is a key implication as it allows the deployment of an InfiniBand network outside the

typical HPC environment while still providing security. Furthermore, the Innova

IPsec provides this capability at line rate. As shown in Case Study 3, IPsec execution

in the CPU drastically impacts the network performance of an InfiniBand network

reducing the overall throughput to 27.3% of the original. To combat this, the Innova

57

IPsec offloads the AES-GCM encryption/decryption and authentication algorithms

necessary for IPsec to ease the burden of the CPU improving network performance. In

fact, a test performed by Mellanox demonstrated that the Innova IPsec could achieve

nearly the same network throughput as a Connect-X 4 would without encryption [26].

This accomplishment is ground breaking in terms of securing an InfiniBand network as

it combines the advanced network capabilities of the IBA while protecting all network

traffic from potential threats at line rate. Although these attributes meet the Protect

and inline requirements for securing an InfiniBand network, further exploration is

needed.

4.6 Programmable SmartNIC via FPGA

The next device explored is the Mellanox Innova-2 Flex. The Innova-2 Flex is

a programmable SmartNic that combines the network capabilities of the Connect-X

5 HCA with a fully programmable “state-of-the-art” FPGA that can be dedicated

to user application logic [28]. The FPGA is a Xilinx KU15P FPGA with 520K

LUTs, 70Mb of internal RAM and 1970 DSP blocks. It allows the implementation

of top-of-the-line offload acceleration engines delivering over 100Gb/s of throughput

capable of meeting the most demanding offload tasks [28]. This device was chosen

because it e. Gilad Shainer, vice president of Marketing at Mellanox Technologies

stated that “the Innova-2 product line brings new levels of acceleration to Mellanox

intelligent interconnect solutions ... equip[ing] our customers with new capabilities

to develop their own innovative ideas, whether related to security, big-data analytics,

deep learning training and inferencing, cloud and other applications. The solution

allows our customers to achieve unprecedented performance and flexibility for the

most demanding market needs” [29]. Inspired by its predecessor the Innova IPsec,

the Innova-2 Flex offers flexible usage models through the use of both “bump-in-the-

58

wire” and “look-aside” architectures. As seen in Figure 11, the FPGA is connected

to the host via an embedded PCIe switch allowing the FPGA to be visible by the

host as a PCIe device. In theory, the embedded switch can be utilized in such a way

to provide “bump-in-the-wire” and “look-aside” architectures permitting more than

just data encryption/decryption.

Figure 11. Mellanox Innova 2 Flex

In addition to being fully programmable, this device is also available with pre-

programmed security encryption offloads such as IPsec and TLS/SSL [29]. The avail-

ability of pre-programmed applications combined with the potential to create custom

59

applications is a defining characteristic for the selection of this device as it allows

the seamless combination of encryption offloads with custom made applications. The

first device examined, the Innova IPsec, is not fully programmable, thereby limit-

ing the security capabilities to only protecting traffic inline at line rate as a custom

FPGA image containing additional capabilities to secure an InfiniBand network can-

not be developed. By dedicating all FPGA resources solely to the user’s application,

the Innova-2 Flex has the ability to implement security in more ways than software

encryption/decryption, including network-distributed Denial-of Service (DDoS) pro-

tection, traffic monitoring and more [28]. The limitations of these security capabilities

are examined in the subsequent section.

4.6.1 Procedure

The exploration of the Innova-2 Flex occurred in two distinct areas according to

the Exploration Approach: the Innova-2 Flex Application (Pre-existing Capabilities)

and a custom application that interacted with the FPGA (Programmable Security).

The Innova-2 Flex application was originally explored to understand how the device

drivers interacted with the FPGA and HCA and to identify and evaluate its pre-

configured capabilities. The second area of exploration dealt with communication

to and from the on board FPGA by developing a security application based on the

defined security requirements.

4.6.1.1 Pre-existing Capabilities: Innova-2 Flex Application

Included with the Innova-2 Flex Bundle is the Innova-2 Flex Application. The

application is used to perform FPGA and board diagnostics, burn custom user images

to the FPGA, and determine whether the Innova-2 Flex or User image will be loaded

onto the FPGA. For the Innova-2 Flex Application section, the Innova-2 Flex image

60

is loaded onto the FPGA as it is needed for diagnostic capabilities. The application

uses two device drivers to interact with the board which create device files that serve

as the actual interface for applications to access the hardware’s functionality: the

bope device file and the I2C device file.

The bope device file allows access to the Innova-2 Flex Image’s diagnostics capa-

bilities via the PCIe bus. The Innova-2 Flex’s diagnostic capabilities are as follows:

• PCIe Test: exercises the PCIe interface between the host and the FPGA.

• DDR Stress Test: data, which can be either 1s, 0s or pseudo-random, is

written to incremental addresses until every DDR address is written to. The

test then reads back the sequence and compares it to the expected sequence.

The test continues until terminated by the user.

• Single Test: writes data all over the DDR space and validates that data is

written properly.

• Query FPGA Version: reads the Innova-2 Flex Image FPGA version and

presents it to the user.

To determine how the device drivers interact with the Innova-2 Flex Image and

what pre-existing capabilities exist on it, the code for the Innova Flex application was

manipulated. Doing so demonstrates the ability to read/write to/from the Innova-2

Flex image using the application and the device driver without changing the FPGA

image. By changing the application code based on the device files generated by the

drivers, the successful alteration of the diagnostic tests enabled reads and writes to

the addresses on the FPGA and the DDR memory. Although this demonstrated the

knowledge of how the device drivers interacted with the Innova-2 Flex application, the

information gained from this was minuscule. Further exploration into the bope driver

indicated the diagnostic tests for the Innova Flex Image burned onto the FPGA

61

were the only pre-existing capabilities available. Thus, the only finding from the

exploration of the bope driver was an insightful understanding of the interaction

between device drivers and host based applications as there were no pre-existing

security capabilities.

The I2C device file is the interface to the FPGA tools driver which provides I2C

communication with both the Connect-X 5 and FPGA on board. The Innova Flex

Application uses this device file to read the thermal status of both the FPGA and

the Connect-X 5. Additionally, the application controls the fan speed and the power

consumption of the FPGA via the I2C device file. Because the Innova-2 Flex claims to

come pre-configured for IPsec and TLS/SSL security offloads, the FPGA tools device

driver was exmained to see what potential capabilities existed and how to potentially

implement the pre-configured offloads.

Upon examination of the FPGA tools driver, it was discovered the header of the

device driver includes a file named “ipsec.c”. This finding was promising as it suggests

that an IPsec offload was possible via this device driver. After further investigation,

it was determined that the FPGA tools driver used by the Innova Flex Application

was identical to the device driver for the Innova IPsec adapter. The utility Iproute2

used this device driver to offload network traffic to the FPGA on the Innova IPsec

adapter and communicate with the HCA. This is important because it demonstrates

the ability for a device driver to control how the FPGA communicates between an

HCA. Communicating between a host and an FPGA and communicating between a

host and an HCA via the PCIe bus is trivial; however, communication through an

FPGA to an HCA via the PCIe bus (bump-in-the-wire) is not. A possible solution

to accomplish this feature theoretically resides in the multitude of InfiniBand device

drivers that interact with the FPGA tools driver. However, an attempt to utilize

the FPGA tools driver to communicate back and forth between the FPGA and HCA

62

via the Innova-2 Flex would require an FPGA image with the exact functionality of

the Innova IPsec but configured for this specific FPGA on the Innova-2 flex. In an

attempt to obtain an IPsec image for the Innova-2 flex that would hopefully shed light

on the “bump-in-the-wire” communication, the vendor, Mellanox, was contacted.

Mellanox confirmed that there is no FPGA image pre-configured for an IPsec

offload for the Innova-2 Flex. Additionally, they reported that Innova-2 Flex is not a

“bump-in-the-wire” architecture and any FPGA logic would have to be implemented

as a look-aside application. Otherwise, to achieve a “bump-in-the-wire” architecture,

the Innova-2 Flex would require the embedded PCIe switch to be used by the FPGA

to allow network traffic to flow to the FPGA in line. Thus, the creation of custom

FPGA logic implementing a security capability would require the FPGA to control

the flow of network traffic both to and from the HCA. This would require a new device

driver as the FPGA tools driver does not possess this ability. Additionally, this device

driver would have to be compatible with all other InfiniBand device drivers. Due to

the difficulty of that effort, this was not attempted within the scope of this research

and it was concluded that, in its current configuration, the Innova-2 Flex cannot

secure an InfiniBand network inline.

4.6.1.2 Programmable Security: Xillybus

Despite the fact that the Innova-2 Flex cannot be used to secure an InfiniBand

network inline, examining possible security applications implemented with a “look-

aside” architecture were still explored. The first step to create custom FPGA logic

capable of protecting, detecting, and responding to anomalous cyber events on an

Infiniband network is to control the flow of network traffic. In order to avoid rein-

venting the wheel in terms of FPGA/PCIe communication, an existing solution was

used: Xillybus. Xillybus is an efficient DMA-based solution for data transport be-

63

tween an FPGA and a Linux host via the PCIe bus [30]. It provides the user the

ability to customize FPGA application logic without having to completely recreate

device drivers to communicate with the hardware. Both the FPGA application logic

and the host-based application interact with one another using common interfaces.

The custom FPGA application logic uses FIFOs to communicate with the Xillybus

FPGA logic and the host application performs file I/O operations on pipe-like device

files [30].

Figure 12 is a simplified block diagram of Xillybus illustrating the flow of data

between the host and the FPGA security logic. The Xillybus IP Core communicates

with the security logic via Application FIFOs, initiating data transfers to and from

the security logic when the FIFOs are ready [30]. The Xillybus IP Core uses the Xilinx

PCIe Integrated Block IP Core as its high bandwidth serial interconnect between it

and the host over the PCIe bus.

Figure 12. FPGA Block Diagram for Xillybus

The device driver for Xillybus produces device files pipes that are written to and

64

read from much like the pipes used in TCP/IP streams [30]. This allows for high-rate

data transfers and simplifies programming host based applications. Because we are

attempting to model the continuous flow of InfiniBand network traffic, the example

application run on the host implements a RAM FIFO for continuous data streams.

The program is comprised of two threads, read and write, that continuously stream

data to and from the FIFOs on the FPGA. This application was chosen because it

would allow a constant flow of data to be sent to the security logic on the FPGA to

mimic the high throughput traffic produced by InfiniBand networks.

In an ideal situation, the security logic on the FPGA would be able to accomplish

all three of the desired security capabilities: Protect, Detect, and Respond. As a proof

of concept however, the security logic for this study is designed to manipulate network

data at the bit level and at line speed. Having the ability to manipulate network

traffic demonstrates the Innova-2 Flex’s potential ability to implement a hardware

offloaded security system that can accomplish protecting, detecting, and responding

to anomalous cyber events. The example security logic created to demonstrate this,

and executed on the FPGA monitors all network traffic in byte sized segments. When

a specific hex value of a byte is detected (hex value x”0101”), the logic flips the least

significant bit of the byte and continues the transfer. After the completion of this

FPGA security logic, a bit-stream was created and burned onto the Innova-2 Flex.

Using the example application provided by Xillybus on the host computer, data was

successfully written to and read from the FPGA. Additionally, every time the hex

value x“0101” was written, the security logic successfully detected the byte and flipped

the least significant bit returning the hex value x“0100”. The execution of this security

application demonstrates the potential to monitor, detect, and manipulate network

traffic with the Innova-2 Flex.

Although the security logic was successfully implemented on the FPGA, it still

65

lacked the ability to control the flow of InfiniBand traffic to and from the HCA. As

previously discussed, Mellanox informed us that a “bump-in-the-wire” architecture

was not achievable with the Innova-2 Flex. Thus, routing any kind of network traffic

from host, to FPGA, to HCA (or vice-versa), was impossible. Because of this signif-

icant limitation, further exploration of this device was halted after the completion of

Phase 3 of the Exploration Approach.

4.6.2 Findings and Implications

The exploration into the capabilities of the Innova-2 Flex revealed the ability to

monitor, detect, and manipulate network traffic. The ability to customize and burn

a user image onto the device was the key advantage over the Innova IPsec as the

Innova IPsec was limited to encryption/decryption and authentication of network

traffic. The implementation of the security logic onto the FPGA illustrated the

security potential the device has. The custom logic was able to monitor inputs, detect

specific hex values, and manipulate the bits at line speed. This demonstrated the

potential the Innova-2 Flex possesses to Detect, Protect, and Respond to anomalous

network activity. The issue however resides with the nature of the architecture of the

device. The previous Innova IPsec adapter was a “bump-in-the-wire” architecture

which allowed all traffic traversing the HCA to also traverse the FPGA enabling

encryption/decryption and authentication to occur inline. Conversely, the Innova-2

Flex does not allow this. Any type of offloaded security system implemented on the

FPGA would require the InfiniBand traffic to travel from host, to offloaded security

system on the FPGA, then back to the host. This look-aside architecture is not

efficient as it would consume large CPU resources and would impact overall network

performance. Although the Innova-2 Flex has the capabilities to Protect, Detect, and

Respond to anomalous activity on an InfiniBand network, its failure to meet the inline

66

requirement negates the device’s attribute of securing an InfiniBand network. Thus,

an alternative device will be discussed in the following section that is implemented

as a SOC.

4.7 Programmable SmartNIC via System on Chip

The last device that considered is the Mellanox BlueField SmartNIC. The Blue-

Field is an intelligent programmable networking engine implemented as a SOC. It has

the ability to accelerate security, networking, and storage workloads via SOC offload

enabling a more efficient use of CPU resources [31]. This allows the CPU to focus

on performing the application tasks rather than processing networking and security

tasks. A block diagram of the BlueField SmartNIC can be seen in Figure 13.

The BlueField I/O Processing Unit combines the advanced networking capabili-

ties of the Connect-X 5 with an array of Arm A72 multicore processors into a single

SOC. The BlueField incorporates the Arm software ecosystem by offloading a x86

software stack onto the SOC enabling the ability to develop advanced offloaded ap-

plications directly on chip [31]. Although the BlueField was developed with many

applications in mind, security is the primary discussion. By combining hardware

security accelerators with embedded software, the BlueField provides an ideal envi-

ronment for proprietary security applications. Mellanox states that the “BlueField

builds security into the DNA of the data center and enables prevention, detection

and response to potential threats in real time” [31]. Based on this statement that

the BlueField enables the prevention (protection), detection, and response to poten-

tial threats in real time (at line speed), it meets our requirements for securing an

InfiniBand network.

67

Figure 13. Mellanox BlueField SmartNic

4.7.1 Future Implications

After working with both the Innova IPsec and the Innova-2 Flex, it was appar-

ent that the direction of offloading a security system for an InfiniBand resided with

the BlueField SmartNIC. Unfortunately, this realization was made very late into the

exploration of devices and delayed the acquisition of the BlueField preventing a com-

prehensive examination of the device. Despite this, Mellanox was generous enough

to discuss potential future security applications involving the BlueField and its suc-

cessor the BlueField-2. Thus, the approach to exploring the Bluefield is solely based

68

on its theoretical implementation. Future research with the Bluefield should follow

the exploration approach outlined in Figure 9. Based on the suggested goal and the

nature of this research, Mellanox has suggested the use of their Security SDK to de-

tect cyber security anomalies in an attempt to secure an InfiniBand network. The

Security Software Development Kit (SDK) executes Deep Packet Inspection (DPI) to

implement Application Recognition and begins at Layer 3. The Application Recogni-

tion uses unique application signatures (regular expression based) to validate traffic

and also validates the connections. The DPI engines come with their own parsers

removing the need to write new parsers for different signatures. The SDK allows

users to write their own signatures in JSON format based on various fields within a

particular protocol. These signatures are then compiled using a provided Mellanox

compiler and used by the BlueField for DPI. The beta version of the Security SDK

has only been implemented using the Ethernet protocol. A future implication of this

product would be its employment in an InfiniBand environment securing both IPoIB

and RDMA channels. Despite not being able to implement the Security SDK on the

BlueField, our research has demonstrated the potential of the BlueField to Protect,

Detect, and Respond to anomalous cyber activity at wire speed, ultimately meeting

the requirements to secure an InfiniBand network.

4.8 Summary

This chapter defined the requirements needed to secure an InfiniBand network,

described three possible hardware solutions for implementing an offloaded security

system, and explored the security limitations of all three devices. The research discov-

ered that the Innova IPsec was theoretically capable of protecting InfiniBand network

traffic at line speed but due to compatibility issues between the firmware and FPGA

images, implementation of the device was unsuccessful. The Innova-2 Flex proved to

69

possess the ability to Protect, Detect, and potentially Respond to anomalous cyber

events as custom security logic was successfully loaded onto the FPGA on the device.

However, the inability for the security logic to be placed inline with the network traffic

ruled out the device as an InfiniBand security solution. The last device assessed was

the BlueField SmartNIC which uses a SOC based approach to offload custom secu-

rity applications. Although not executed on the device itself, the Mellanox Security

SDK enables the prevention, detection, and response to potential threats in real time

meeting all requirements necessary to secure an InfiniBand network. A summary of

the devices’ capabilities can be found in Table 4.

Device: Protect Detect Respond Inline at Line Rate
Innova IPsec Adapter X X
Innova-2 Flex Adapter X X X
BlueField SmartNIC X X X X

Table 4. Hardware Device Capabilities Summary

70

V. Conclusion

5.1 Overview

This chapter summarizes the research conducted on an InfiniBand network’s secu-

rity including the deployment and exploration of numerous types of security systems

and devices. It reiterates the motivation behind securing an InfiniBand network

through a hardware offloaded security system rather than with traditional Ethernet

security practices. It discusses the proposed hardware device which will be used to

help guide future development of a security system designed specifically for Infini-

Band. The chapter closes by discussing the significance of the research performed as

well as future work that needs to be conducted to ensure the security of an InfiniBand

network.

5.2 Summary

This research focused on the security of the IBA and the implications associated

with attempting to secure an InfiniBand network outside of its typical HPC environ-

ment. It describes how the IBA functions as an advanced interconnect technology and

discusses current security features that the IBA possesses. A cybersecurity framework

was also introduced to survey possible security capabilities that are desired when

securing an InfiniBand network. An example application of InfiniBand in Vehicle

Networks was discussed to demonstrate the need for security outside of HPC cluster

environments. Previous research involving the IBA and security vulnerabilities was

presented, exemplifying the need for further research in this area.

The potential effects of securing an Infiniband network were discussed and ana-

lyzed in the form of three case studies. An InfiniBand Client/Server application was

also created to illustrate the kernel bypass feature which enables low latency and high

71

bandwidth communication over InfiniBand networks. This program was used in two

of the three case studies. Case Study 1 explored the ability to detect and monitor

InfiniBand traffic that bypasses the kernel. Case Study 2 implemented a network

security system on an InfiniBand network and analyzed the security limitations of it

when attempting to secure InfiniBand traffic. Case Study 3 examined the performance

impact IPsec produces when executed on a non kernel bypass application.

Case Study 1 identified that monitoring InfiniBand traffic must take place outside

of the host machine’s kernel. Typical network traffic analyzers used on Ethernet

networks were implemented in an attempt to capture TCP/IP packets sent with the

InfiniBand Client/Server program. These applications were unsuccessful in capturing

the network packets suggesting that network traffic that bypasses a host machine’s

kernel cannot be monitored by applications that reside within the kernel. Thus, a

proprietary hardware device capable of capturing kernel bypass traffic in hardware

was employed. This device proved to be successful in capturing the packets produced

by the custom application. This case study proved that monitoring and detecting

InfiniBand traffic is possible with a proprietary hardware device and implies the need

for hardware implementation of traffic monitoring.

Case Study 2 highlighted that common network security systems used on Ether-

net networks cannot secure InfiniBand traffic. This case study attempted to encrypt

and authenticate TCP/IP packets transmitted by the InfiniBand Client/Server pro-

gram using the IPsec protocol. Despite its implementation, all packets captured and

analyzed remained as plaintext TCP/IP packets. These results illustrate the inabil-

ity for the IPsec protocol to execute on InfiniBand traffic. Case Study 2 concludes

that because IPsec is executed in the TCP/IP stack kernel layer, and the InfiniBand

Client/Server Program bypasses the kernel, IPsec cannot protect programs that use

InfiniBand verbs. It also suggests that other network security systems executed in the

72

kernel will be unsuccessful and proposes the need for a new type of security system.

Case Study 3 examined the effects of implementing a network security system on

InfiniBand traffic that did traverse the kernel stack. After determining that IPsec

could not be implemented on the InfiniBand Client/Server program, an alternate

program was chosen that did allow IPsec to execute. This program was designed

to measure the maximum throughput a device could handle making it ideal for this

case study. The results of this study demonstrated that IPsec reduced the overall

throughput of an InfiniBand network to 27.3% of the original. Case Study 3 deter-

mined the potential security provided by IPsec is not worth the performance impact

and suggests that a security hardware offload is the solution to securing an InfiniBand

network.

The desired capabilities for a hardware offloaded network security system designed

for an InfiniBand network were defined. This research determined that such a sys-

tem needed to Protect, Detect, and Respond to anomalous cyber events and do so

inline and at line rate. To evaluate whether or not potential hardware devices could

meet the requirements to secure an InfiniBand network, a methodology was devel-

oped. The Exploration Approach was comprised of three distinct phases to evaluate

a given device’s security limitations. The technology of potential hardware devices

were compared among one another to determine the best possible solutions based on

their associated strengths and weaknesses. This work selected three hardware devices

to explore that had the potential to secure an InfiniBand network.

The first device selected was the Mellanox Innova IPsec adapter. Recall that the

Innova IPsec was chosen because it offloads the IPsec protocol onto a “bump-in-the-

wire” FPGA allowing encryption/decryption of network traffic to occur inline and

line speed. This device would protect the confidentiality, integrity, and authenticity

of all network traffic without impacting network performance. The exploration con-

73

ducted on the device proved unsuccessful as the firmware and FPGA images needed

to execute the IPsec offload were confirmed to be incompatible for this purpose. Still,

this research concluded that if implemented successfully, the Innova IPsec would be

able to Protect an InfiniBand network against anomalous cyber activity at line rate.

Nevertheless, the device would not be able to fully secure an InfiniBand network as

it does not offer the Detect and Respond capabilities.

The second device selected was the Mellanox Innova 2 Flex adapter. The Innova

2 Flex was chosen because it offered an open-programmable platform which could

be used to create a wide range of possible security applications improving upon its

predecessor the Innova IPsec. The exploration into this device occurred in two parts.

The results from the first study indicated that implementing a “bump-in-the-wire”

architecture with the on-board FPGA was infeasible thus securing InfiniBand network

traffic inline was not achievable. The second study implemented security logic onto

the FPGA and was able to successfully demonstrate the ability to monitor, detect,

and manipulate network traffic. This work revealed that the Innova 2 Flex did possess

the ability to Protect, Detect, and Respond but lacked the capability to do so inline

and at line rate.

The last device explored in this research was the Mellanox BlueField SmartNIC.

The BlueField provides an ideal environment for security applications by accelerating

security, networking, and storage workloads via SOC offload. A delayed acquisition

of the device forced this exploration to become theoretical as a network security

system was never attempted to be implemented. The proposed network security

system to be implemented was Mellanox’s Security SDK which would enable the

prevention, detection, and response to potential cyber threats in real time via DPI and

Application Recognition. This research concludes the future of securing an InfiniBand

network resides with the BlueField SmartNIC.

74

5.3 Research Contributions

This research has made a number of contributions to the areas of InfiniBand

network security and hardware network security systems. The inability to monitor/-

capture kernel bypass traffic with traditional network traffic analyzers demonstrated

the need for alternative hardware devices targeted for InfiniBand traffic. Additionally,

host-based network security systems used to control and monitor Ethernet networks

cannot be implemented on InfiniBand networks as many of these security systems

are executed in the hosts’ kernel. This contribution suggests a new security system

designed specifically for InfiniBand network traffic is needed. Securing an InfiniBand

network was defined as the Protection, Detection, and Response to potential cyber

threats derived from the NIST Framework. The comparison among the three hard-

ware devices made it evident the BlueField SmartNIC has the potential to secure an

InfiniBand network because it can Protect, Detect, and Respond to potential cyber

threats in real time. Thus, future development of an offloaded hardware security

system should reside with it.

5.4 Future Work

Given the rapid development of the IBA and the ever changing cyber threat

landscape, there are additional areas that need to be explored and developed. Listed

below are select topics that would expand the scope of this research:

• Security SDK: As mentioned in Chapter 4, the Security SDK provided by

Mellanox was never implemented onto the BlueField SmartNIC. Future research

should not only deploy the Security SDK, but evaluate the effectiveness of the

Application Recognition capability to determine the security limitations. Ad-

ditionally, the Security SDK should attempt to secure all types of InfiniBand

75

channels including RDMA, IPoIB, and RoCE to expand the scope of this re-

search across all potential protocols utilized within an InfiniBand network.

• Software Defined Network Approach: An SDN approach to securing an

InfiniBand network is an area worth exploring due to the SDN nature of the

IBA. Forwarding and routing tables are already controlled centrally by a SM

thus a centralized network security system would allow an easy transition. Ad-

ditionally, a centralized network security system would not need its own network

protocol as it could use the current InfiniBand control plane protocol simplify-

ing a potential implementation. Future research into an SDN approach could

bring security advancements to the control plane of future InfiniBand networks.

• Machine Learning Security: The rate at which network traffic flows via In-

finiBand is ground breaking. Thus, managing the vast workloads produced by

an InfiniBand network to perform security risk assessment on is overwhelming.

The use of machine learning could potentially ease this burden and by identify-

ing major risks found within an InfiniBand network to help prioritize security

resources [32]. Specifically, Machine Learning could be utilized to implement

the GUID spoofing mitigation approach described in [10]. Machine Learning

could be used to monitor link state configurations and respond appropriately

to anomalous activity detected.

5.5 Conclusion

This research demonstrated that network security practices used on traditional

Ethernet networks do not translate to InfiniBand networks as previously suggested

and that a hardware network security system was needed in order to secure an In-

finiBand network. It defined the desired security capabilities of such a system as the

76

Protection, Detection, and Response to potential cyber threats at line rate which

guided the selection of the BlueField SmartNIC as the appropriate device to imple-

ment the system with. It is obvious that not all implications of securing an InfiniBand

network have been explored as the true potential of the IBA is yet to be determined.

As the popularity of InfiniBand continues to grow outside the HPC domain, securing

InfiniBand networks should be at the highest of priority for both the HPC and cyber

security communities to protect against the ever changing cyber threat landscape.

77

Bibliography

1. IBTA, “InfiniBand TM Architecture Specification Volume 1 Release 1.3,” 2015.

2. Mellanox Technologies, “InfiniBand Software and Protocols Enable Seamless Off-

the-shelf Applications Deployment,” White paper, Mellanox, no. December, pp.

1–8, 2007.

3. G. F. Pfister, “An Introduction to the Infiniband Architecture,” Emerging Tech-

nologies and Future Trends, vol. Part IX, p. Chapter 42.

4. “List Statistics,” 2019. [Online]. Available: https://www.top500.org/lists/2019/

11/highs/

5. IBTA, “About InfiniBand.” [Online]. Available: https://www.infinibandta.org/

about-infiniband/

6. Mellanox Technologies, “Introduction to InfiniBand,” Technical Report, pp. 1–20,

2003.

7. D. Schmitt, S. Graham, P. Sweeney, and R. Mills, “A Cyber Vulnerability As-

sessment of Infiniband Networking,” Tech. Rep.

8. M. Lee and E. J. Kim, “A comprehensive framework for enhancing security in

InfiniBand architecture,” IEEE Transactions on Parallel and Distributed Systems,

2007.

9. M. Lee, E. J. Kim, and M. Yousif, “Security enhancement in infiniBand ar-

chitecture,” in Proceedings - 19th IEEE International Parallel and Distributed

Processing Symposium, IPDPS 2005, 2005.

10. A. Warren, “InfiniBand Fabric and Userland Attacks,” SANS Institute, Tech.

Rep., 2012.

11. K. P. Subedi, D. Dasgupta, and B. Chen, “Security analysis on InfiniBand pro-

tocol implementations,” in 2016 IEEE Symposium Series on Computational In-

telligence, SSCI 2016. Institute of Electrical and Electronics Engineers Inc., feb

2017.

12. National Institute of Standards and Technology, “NIST CyberSecurity

Framwork.” [Online]. Available: https://www.nist.gov/cyberframework

13. Mellanox, “InfiniBand: The Production SDN,” Mellanox Technologies,

Sunnyvale, CA, Tech. Rep., 2012. [Online]. Available: http://www.mellanox.

com/related-docs/whitepapers/WP{\ }InfiniBand{\ }Production{\ }SDN.pdf

78

14. J. Corbet, A. Rubini, and G. Kroah-Hartman, “Linux Device Drivers,” Tech.

Rep., 2005.

15. Mellanox, “RDMA Aware Networks Programming User Manual,” Tech. Rep.,

2013. [Online]. Available: www.mellanox.com

16. Mellanox Technologies, “Security in Mellanox Technologies InfiniBand Fabrics,”

White paper, p. 7, 2012.

17. S. Tuohy, M. Glavin, C. Hughes, E. Jones, M. Trivedi, and L. Kilmartin, “Intra-

Vehicle Networks: A Review,” IEEE Transactions on Intelligent Transportation

Systems, vol. 16, no. 2, pp. 534–545, 2015.

18. W. Zeng, M. A. Khalid, and S. Chowdhury, “In-vehicle networks outlook:

Achievements and challenges,” IEEE Communications Surveys and Tutorials,

vol. 18, no. 3, pp. 1552–1571, 2016.

19. R. Boagey, “Ethernet : the fast track to the connected car,” Automotive World

Ltd, pp. 36–38, 2014.

20. The Economist, “Mobileye and Intel Join Forces,” 2017.

[Online]. Available: https://www.economist.com/business/2017/03/16/

mobileye-and-intel-join-forces

21. “The Evolution of EyeQ,” 2018. [Online]. Available: https://www.mobileye.

com/our-technology/evolution-eyeq-chip/

22. E. Kadric, N. Manjikian, and Z. Zilic, “An FPGA implementation for a high-speed

optical link with a PCIe interface,” in International System on Chip Conference,

2012.

23. I. Kuon, R. Tessier, and J. Rose, “FPGA Architecture: Survey and Challenges,”

Foundations and Trends R© in Electronic Design Automation, vol. 2, no. 2, pp.

135–253, may 2008.

24. Pci-Sig, “PCI Express Base Specification Revision 5.0,” pp. 1–704, 2019.

[Online]. Available: http://www.pcisig.com/specifications/pciexpress/base3/

25. K. Deierling, “What Is a SmartNIC?” 2018.

26. Mellanox Technologies, “Mellanox Innova TM IPsec : Achieve Groundbreaking

Security for VPN , Data Privacy & Data-in-Motion , while Reducing Total Cost

of Ownership (TCO),” pp. 1–5, 2018.

27. ——, “Mellanox Innova TM IPsec Adapter Card,” 2017.

79

28. ——, “Mellanox Innova TM -2 Flex Open Programmable SmartNIC,” 2018.

29. ——, “Mellanox Announces Innova-2 FPGA-Based Programmable Adapter Fam-

ily to Power Next Generation of Cloud, Security, Big Data and Deep Learning

Platforms,” 2017.

30. E. Billauer, “Xillybus on a Linux Host.”

31. Mellanox Technologies, “BlueField SmartNIC,” 2019.

32. P. Efstathopoulos, “Cloud Security is Overwhelming. AI and Machine Learning

Can Help,” NortonLifeLock Research Group, Tech. Rep., 2019.

80

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

26–03–2020 Master’s Thesis Sept 2018 — Mar 2020

Implications and Limitations of Securing an InfiniBand Network

19G230

Mireles, Lucas, E., 2d Lt, USAF

Air Force Institute of Technology
Graduate School of Engineering an Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-20-M-044

Air Force Research Laboratory
2241 Avionics Circle
WPAFB OH 45433-7765
Attn: Steven Stokes
COMM 937-528-8035
Email: steven.stokes@us.af.mil

AFRL/RYWA

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The InfiniBand Architecture is one of the leading network interconnects used in high performance computing, delivering
very high bandwidth and low latency. As the popularity of InfiniBand increases, the possibility for new InfiniBand
applications arise outside the domain of high performance computing, thereby creating the opportunity for new security
risks. In this work, new security questions are considered and addressed. The study demonstrates that many common
traffic analyzing tools cannot monitor or capture InfiniBand traffic transmitted between two hosts. Due to the kernel
bypass nature of InfiniBand, many host-based network security systems cannot be executed on InfiniBand applications.
Those that can impose a significant performance loss for the network. The research concludes that not all network
security practices used for Ethernet translate to InfiniBand as previously suggested and that an answer to meeting
specific security requirements for an InfiniBand network might reside in hardware offload.

InfiniBand Architecture, Network Cyber Security, IPsec

U U U UU 94

Dr. Scott Graham, AFIT/ENG

(937) 255-6565 x4581; scott.graham@afit.edu

